3D Printing A Bottle Labeling Assembly Line

We’re not completely sure why [Fraens] needs to label so many glass bottles at home. Perhaps he’s brewing his own beer, or making jams. Whatever the reason is, it was justification enough to build an absolutely incredible labeling machine that you could mistake for a piece of industrial gear…if it wasn’t for the fact that majority of the device is constructed out of orange 3D printed plastic.

As we’ve come to expect, [Fraens] has documented the build with a detailed write-up on his site — but in this case, you’ve really got to watch the video below to truly appreciate how intricate the operation of this machine is. Watching it reminded us of an episode of How It’s Made, with the added bonus that you not only get to see how the machine functions, but how it was built in the first place.

Nearly every part of the machine, outside the fasteners, smooth rods, a couple of acrylic panels, and a few sections of aluminum extrusion, were 3D printed. You might think this would result in a wobbly machine with sloppy tolerances, but [Fraens] is truly a master of knowing when and where you can get away with using printed parts. So for example, while the glue rollers could be done in printed plastic, they still needed metal rods run through the middle for strength and proper bearings to rotate on.

Looking at the totality of this build, it’s hard to imagine how it could have been accomplished via traditional methods. Sure you could have sourced the rollers and gears from a supplier to save some plastic (at an added expense, no doubt), but there’s so many unique components that simply needed to be fabricated. For example, all the guides that keep the label heading in the right direction through the mechanism, or the interchangeable collars which let you select the pattern of glue which is to be applied. Maybe if you had a whole machine shop at your disposal, but that’s a lot more expensive and complex a proposition than the pair of desktop 3D printers [Fraens] used to crank out this masterpiece.

If the name (and penchant for orange plastic) seems familiar, it’s because we’ve featured several builds from [Fraens] in the past. This one may be the most technically impressive so far, but that doesn’t diminish the brilliance of his vibratory rock tumbler or cigarette stuffing machine.

Continue reading “3D Printing A Bottle Labeling Assembly Line”

Busted: Toilet Paper As Solder Wick

It didn’t take long for us to get an answer to the question nobody was asking: Can you use toilet paper as solder wick? And unsurprisingly, the answer is a resounding “No.”

Confused? If so, you probably missed our article a few days ago describing the repair of corroded card edge connectors with a bit of homebrew HASL. Granted, the process wasn’t exactly hot air solder leveling, at least not the way PCB fabs do it to protect exposed copper traces. It was more of an en masse tinning process, for which [Adrian] used a fair amount of desoldering wick to pull excess solder off the pins.

During that restoration, [Adrian] mentioned hearing that common toilet paper could be used as a cheap substitute for desoldering wick. We were skeptical but passed along the tip hoping someone would comment on it. Enter [KDawg], who took up the challenge and gave it a whirl. The video below shows attempts to tin a few pins on a similar card-edge connector and remove the excess with toilet paper. The tests are done using 63:37 lead-tin solder, plus and minus flux, and using Great Value TP in more or less the same manner you’d use desoldering braid. The results are pretty much what you’d expect, with charred toilet paper and no appreciable solder removal. The closest it comes to working is when the TP sucks up the melted flux. Stay tuned for the bonus positive control footage at the end, though; watching that legit Chemtronics braid do its thing is oddly satisfying.

So, unless there’s some trick to it, [KDawg] seems to have busted this myth. If anyone else wants to give it a try, we’ll be happy to cover it.

Continue reading “Busted: Toilet Paper As Solder Wick”

No TP? No Problem!

Among First World Problems, there can be few worse than running out of toilet paper. The horror! If you’re not able to do as we did yesterday and borrow a pack until more can be bought, then you’re not without options. A handy copy of the Daily Mail could be cut into squares and hung up in your Smallest Room, or you can even make your own with the help of this handy instructional video from [whoisandrewfahmy]. It appears from a casual search to be one of many such guides that appeared during the pandemic when the bog roll supply was seen as endangered, but it’s still interesting simply as a diversion into how something is made.

The process is surprisingly straightforward, starting with scrap paper, which is shredded and soaked before being boiled to break down to pulp. The pulp is then emulsified, and some body oil is added to remove the sandpaper-on-the-butt experience before being spread between a sheet and a piece of window screen to be ironed dry. It’s an energy-intensive process, so the Daily Mail is likely to be an easier stopgap if no friends can lend you a few rolls, but it’s left us here curious about papermaking. The butts of Hackaday may be safe from homemade TP, but that’s not to say that it wouldn’t be interesting to make other paper products. Check out the video below.

Of course, back in April 2020 we had our own solution to the pandemic toilet paper shortage. After you make your bespoke dunny roll, how can you wind it into a nice roll? Don’t worry. We got you.

Continue reading “No TP? No Problem!”

Luxury Train Cars Used To Ride On Paper Wheels

Early on, railways primarily used wheels made of wood or iron. The former were cheap and relatively easy to manufacture, while the latter had far superior wear qualities. It may surprise you to learn, however, that some railways once used wheels made out of paper, as [Train of Thought] explains.

The wheels were pioneered by a man known as Richard N. Allen, in the 19th century. The wheels were constructed by layering up hundreds of sheets of paper with glue, compacting them with a press, and allowing them to cure for a few weeks. The solid paper disks were then machined to size, and were drilled to accept bolts that attached metal plates for protection. The wheels were given a cast-iron hub and a steel rim for wear reasons.

The benefit of the wheels was that their composite paper construction helped damp vibrations and noise from the wheels and rails. The North American Pullman railway ended up using the wheels for sleeper and dining carriages for the more luxurious ride they provided.

The paper wheels were short lived, however. While the wheels were up to the task when new, they would fail much sooner than solid metal wheels. A series of derailments led to the wheels being declared unsafe for use in the US by 1915.

The wheels serve as a good example of wheels and tires acting as a tuned part of a whole suspension system. Experimental wheel designs come and go, but there are reasons why we landed on certain designs for certain applications, after all. Video after the break.

Continue reading “Luxury Train Cars Used To Ride On Paper Wheels”

Forgotten Chemical Photography

Much to the chagrin of Eastman Kodak, the world has moved on from chemical photography into the realm of digital, thanks to the ease of use and high quality of modern digital cameras. There are a few photographers here and there still using darkrooms and various chemical processes to develop film, and the most common of these use some type of chemistry based on silver to transfer images to paper. There are plenty of alternatives to silver, though, each with their unique style and benefits, like this rarely-used process that develops film using platinum.

This process, notable for its wide tonal range, delicate highlights, and rich blacks, produces only black and white photographs. But unlike its silver analog, it actually embeds the image into the paper itself rather than holding the image above the paper. This means that photographs developed in this manner are much more resilient and can last for much longer. There are some downsides to this method though, namely that it requires a large format camera and the negatives can’t be modified to produce various sized images in the same ways that other methods allow for. Still, the results of the method are striking for anyone who has seen one of these images in person.

As to why this method isn’t more common, [Matt Locke] describes a somewhat complicated history involving the use of platinum to create commercial fertilizers, which is an identical process to that of the creation of explosives, which were needed in great numbers at the same time this photographic method was gaining in popularity. While the amount of research and development that goes into creating weapons arguably generates some ancillary benefit for society, the effects of war can also serve to divert resources away from things like this.

Sundial Collection Is 2D Printed

We see a lot of clocks, and many of the better ones have some 3D printed elements to them. But [Carl Sabanski] shows us his kits for making sundials for either hemisphere using a conventional printer (you know, one that puts ink on paper), some styrofoam, and possibly some other materials like wire coat hangers, threaded rods, thumbtacks, glue, and different papers like transparencies or card stock.

In all, there are 21 different kinds of sundials. Some are pretty standard-looking fare, but there are others, like the pinwheel equatorial sundial or the cycloid polar sundial, which might be surprising. One even uses a CD as a kind of indicator.

Continue reading “Sundial Collection Is 2D Printed”

Replace An AA Battery With Paper

Paper is an ubiquitous part of society; so much so that the incredible engineering behind it often goes unnoticed. That isn’t the case for [Robert], though, who has a deep appreciation for the material and all its many uses far beyond recording information. In this particular video, he recreates a method found by researchers to turn a piece of paper into a battery with equivalent performance to a AA-sized alkaline battery. (Video, embedded below the break.)

The process involves the creation of a few different types of ink, each of which can be made with relatively common materials such as shellac, ethanol, polyethylene glycol, and graphite. Each of these materials are mixed in different proportions to create the inks. Once the cathode ink and anode ink are made, a third ink is needed called a current collector ink which functions essentially as a wire. The paper is dipped into a salt solution and then allowed to dry, given a partial waterproof coating, and when it is needed it can be activated by wetting it which allows the ion flow of the battery to happen.

The chemistry of this battery makes a lot of sense once you see it in action, and the battery production method also has a perk of having a long shelf life as long as the batteries stay dry. They also don’t damage the environment as much as non-rechargable alkaline cells do, at least unless you want to go to some extreme measures to reuse them.

Continue reading “Replace An AA Battery With Paper”