Remote Water Quality Monitoring

While it can be straightforward to distill water to high purity, this is rarely the best method for producing water for useful purposes. Even drinking water typically needs certain minerals in it, plants may need a certain pH, and wastewater systems have a whole host of other qualities that need to be measured. Measuring water quality is a surprisingly complex endeavor as a result and often involves a wide array of sensors, much like this water quality meter from [RowlesGroupResearch].

The water quality meters that they are putting to use are typically set up in remote locations, without power, and are targeting natural bodies of water and also wastewater treatment plants. Temperature and pH are simple enough to measure and grasp, but this device also includes sensors for total dissolved solids (TDS) and turbidity which are both methods for measuring various amounts and types of particles suspended in the water. The build is based around an Arduino so that it is easy for others to replicate, and is housed in a waterproof box with a large battery, and includes data logging to an SD card in order to make it easy to deploy in remote, outdoor settings and to gather the data at a later time.

The build log for this device also goes into detail about all of the steps needed to set this up from scratch, as well as a comprehensive bill of materials. This could be useful in plenty of professional settings such as community wastewater treatment facilities but also in situations where it’s believed that industrial activity may be impacting a natural body of water. For a water quality meter more focused on drinking water, though, we’d recommend this build that is trained on its own neural network.

A two picture montage with the left montage showing a pair of hands holding an assembled and closed turbidity sensor and the right picture showing A pair of hands holding the screw on cap for the turbidity sensor and a prototype board against a backdrop of green leave

Rapid Prototyping To Measure Turbidity In Rapids

[RiverTechJess] is in the process of getting a PhD in environmental engineering and has devoted a chapter to creating a turbidity sensor for river network monitoring. Environmental sensing benefits from being able to measure accurately and frequently, so providing low cost devices helps get more data and excuse the occasional device loss that’s bound to happen when deploying electronics out in the wild. Towards this end, [RiverTechJess] has created a low cost turbidity sensor that rivals the more expensive alternatives in cost and accuracy.

The turbidity sensor is designed to be at least partially submerged allowing for the LED and light sensors to be be able to take measurements. [RiverTechJess] has made a 3D printed prototype to test the design, allowing for rapid experimentation and deployment of the sensors to work out issues. The 3D printed enclosure prototype uses rubber o-rings and “vacuum grease” to provide a watertight seal. An ESP32 microcontroller is used to store logged data on an SD card and drive the TSHG6200 850nm infrared LED and the two TSL237S-LF sensors.

The resulting paper on the turbidity sensor, in addition to the blogs of the process, provide a wealth of data that show what goes into developing and calibrating a device that is meant to be used for environmental monitoring. All source code is available on GitHub and development continues on a newer revision of the turbidity sensor with updated electronics and hardware.

We’re no strangers to water sensors and we’ve seen devices from internet connected water pollution monitors to small handheld potable water detectors.

Video after the break!

Continue reading “Rapid Prototyping To Measure Turbidity In Rapids”