Shah Selbe: Science in the World’s Wildest Places

When we think of building research hardware, lab coats and pristine workbenches come to mind. Shah Selbe used to do something kind of like that when he was engineering satellite propulsion systems. But after putting twelve of them into space, he ditched the office gig and took his gear to some of the wildest places on earth. He’s an explorer and fellow with the National Geographic Society, and at the Hackaday Superconference he shared his experiences building research hardware that gathers data in incredibly remote places.

Shah makes a really good point about two very different trends in our world over the past several decades. While we’ve had unparalleled technological growth, we’ve also seen horrifying wildlife trends to the point that some scientists believe we’re currently in a sixth mass extinction event. But to know that for sure, and look for ways to prevent and reverse it, we need reliable data. This is a fascinating problem because the world is huge, and we simply can’t monitor everything.

Continue reading “Shah Selbe: Science in the World’s Wildest Places”

ESP8266 Home Monitor Is Stylishly Simplistic

It’s often said that “Less is More”, and we think that the chic ESP8266 environmental monitor posted by Thingiverse user [bkpsu] definitely fits the bill. Dubbed “Kube”, the device is a 3D printed white cube with an OLED display in the center, which [bkpsu] says was designed specifically for the approval of his wife. Weirdly, she didn’t like the look of bare PCBs on the wall.

Multiple Kubes allow for whole-house monitoring.

Inside, things are a little more complex. The Kube uses the NodeMCU development board, and a custom breakout that [bkpsu] designed to interface with the display and sensors. For temperature and humidity monitoring, the Kube is using the ever-popular DHT22, and [bkpsu] mentions that he has future plans for things like motion sensors and direct control of RGB LED strips. All the data collected by the Kube is piped into openHAB via MQTT.

On the very detailed Thingiverse page, [bkpsu] gives background information on his design goals for the project, tips for printing out a high-quality case, a parts list with Amazon links, and pinout information for getting it all wired up. The PCB is even available on OSH Park for those who want a Kube of their own.

Even with all the stick home monitoring and automation products on the market today, many hackers simply can’t bring themselves to buying a turn-key commercial product. But we think with the results hackers have been getting rolling their own solutions, they just might be on to something.

Hackaday Prize Entry: A Portable Environmental Monitor

There are a lot of environmental monitors in the running for this year’s Hackaday Prize. Whether they’re soil moisture sensors for gardens or ultraviolet sensors for the beach, the entrants for The Hackaday Prize seem to grasp the inevitable truth that you need information about the environment before doing anything about the environment.

But what about sharing that information? Wouldn’t it be handy if there were an online repository where you could look up environmental conditions of any location on the planet? That’s where [radu.motisan]’s Portable Environmental Monitor comes in. It’s a small, pocketable device that measures just about everything and uploads that data to the Internet.

This project is a continuation of [radu]’s entry for The Hackaday Prize last year, the Global Radiation Monitoring Network. This was more than just a Geiger tube connected to the Internet; [radu] has a global network of Geiger counters displaying counts per minute on a nifty live map.

[radu]’s latest project expands on the capabilities of the Global Radiation Monitoring Network with more sensors and portability. Inside the Environmental Monitor are enough sensors to look at Alpha, Beta and Gamma radiation, dust and toxic gas, and other types of pollution. With the addition of an ESP8266 WiFi module, this portable device can upload sensor readings to the Internet, greatly expanding [radu]’s uRADMonitor network.

The 2015 Hackaday Prize is sponsored by:

Move Over Humans and Things, Flowers Now On The ‘Net

Tweeting Poppy Plants

The ‘Internet of Flowers’ is upon us thanks to an artist named [Adrian]. He has designed a project that not only monitors the growth of Poppy Flowers but also monitors the soil, air and surrounding activity.

The entire project is based on a Raspberry Pi mounted in a purpose-built enclosure made from laser cut birch plywood. The enclosure is mounted in a window of an adjacent building that has a view of the flower bed. An internally mounted camera was carefully aligned so its field of view was mostly of the plants and would limit taking photos of unknowing passersby. The camera takes a snap shot every 5 minutes, see the time lapse video below.

Tweeting Poppy PlantsA box containing sensors is installed in the flower bed. The intent of this project was not to have the Raspberry Pi spit out hard factual data regarding soil moistness, temperature and ambient noise, but to instead take that data from the sensors and send out a story-like narrative that makes the communication feel more personal. To receive these comments from the poppies, you can follow them on Twitter: @tweetingpoppy.

Continue reading “Move Over Humans and Things, Flowers Now On The ‘Net”

Environmental monitoring

[Daniel Klien] sent me his thermd environmental monitoring project. It’s written in perl, but the cool part is the sheer number of supported devices. It’s pretty rare when a single developer is given test hardware so he can add support for it.

Sure, this isn’t a hardware hack, but temperature logging is one of those irritating problems of hardware hacking. I’ve got loads of uses for it – coffee roasting, house management, battery charging, monitoring for my EV motorcycle project.