A Laptop with an External Graphics Card?

It used to be that desktop computers reigned king in the world of powerful computing, and to some extent, they still do. But laptops are pretty powerful these days, and in our experience, a lot of engineering companies have actually swapped over to them for resource hungry 3D CAD applications — But what if you still need a bit more power?

Well, [Kamueone] wasn’t satisfied with the performance of his Razer Blade GTX870m laptop, so he decided to hack it and give it its own external graphics card.

Now unfortunately this really isn’t quite a simple as running some PCIE extender cables — nope. You’ll have to modify the BIOS first, which according to [Kamueone], isn’t that bad. But after that’s done you’ll also need a way to mount your graphics card outside of the laptop. He’s using an EXP GDC Beast V6 which uses a mini PCIE cable that can be connected directly to the laptop motherboard. You’re also going to need an external power supply.

[Kamueone] ran some benchmarks and upgrading from the stock onboard GTX870m to an external GTX 780ti resulted in over three times the frame rate capability — 40fps stock, 130fps upgraded!

Lenovo Shipped PC’s with Spyware that Breaks HTTPS

If you’ve ever purchased a new computer then you are probably familiar with the barrage of bloatware that comes pre-installed. Usually there are system tools, antivirus software trials, and a whole bunch of other things that most of us never wanted in the first place. Well now we can add Superfish spyware to the list.

You may wonder what makes this case so special. A lot of PC’s come with software pre-installed that collect usage statistics for the manufacturer. Superfish is a somewhat extreme case of this. The software actually installs a self-signed root HTTPS certificate. Then, the software uses its own certificates for every single HTTPS session the user opens. If you visit your online banking portal for example, you won’t actually get the certificate from your bank. Instead, you’ll receive a certificate signed by Superfish. Your PC will trust it, because it already has the root certificate installed. This is essentially a man in the middle attack performed by software installed by Lenovo. Superfish uses this ability to do things to your encrypted connection including collecting data, and injecting ads.

As if that wasn’t bad enough, their certificate is actually using a deprecated SHA-1 certificate that uses 1024-bit RSA encryption. This level of encryption is weak and susceptible to attack. In fact, it was reported that [Rob Graham], CEO of Errata Security has already cracked the certificate and revealed the private key. With the private key known to the public, an attacker can easily spoof any HTTPS certificate and systems that are infected with Superfish will just trust it. The user will have no idea that they are visiting a fake phishing website.

Since this discovery was made, Lenovo has released a statement saying that Superfish was installed on some systems that shipped between September and December of 2014. They claim that server-side interactions have been disabled since January, which disables Superfish. They have no plans to pre-load Superfish on any new systems.

Fixing Faulty But Genuine Apple Power Adapters

apple The standard power adapter for Apple laptops is a work of art. The Magsafe connector has saved more than one laptop owned by the Hackaday crew, and the power brick with interchangeable plugs for different countries is a work of genius. Being a miracle of modern manufacturing doesn’t mean Apple gets it right all the time; the UK adapter doesn’t use the ground plug, leading to the power supplies singing at 50 Hz when plugged in. [Gareth] had had enough of the poor design of his charger and decided to fix it.

The Apple power adapter has two obvious connections, and another shiny metal disk meant for a connection to Earth. In most of the Apple charger ‘extension cords’, this earth connection is provided by the cord. In the smaller plug adapters – even ones where space is not an issue, like the UK plug – this connection is absent.

To fix this glaring oversight, [Gareth] shoved some aluminum foil where the earth terminal on the plug should go. A hole was drilled through the plug to connect this foil to the Earth socket terminal, and everything was covered up with kneadable epoxy.

No, aluminum foil probably won’t do its actual job of preventing horribleness in the event of an insulation failure or short. It will, however, silence the 50 cycle hum emanating from the power adapter, and that’s good enough for [Gareth].

From Broken Laptop Screen to Portable Light Table

Light table from broken LCD

If you’re like most of us here at Hack a Day, you probably shudder at the amount of e-waste that gets thrown out — here’s a clever way to make some good use out of a broken laptop screen!

[Victor] recently received a broken laptop from a friend, and as it turned out, only the LCD was broken. It’s old though so he didn’t want to buy a new screen for it. Instead he chopped it in half and used the functioning half as a media HTPC for his TV. He was about to trash the screen when he had an idea — the LCD was busted, but the back light wasn’t!

He carefully took apart the screen and removed the LCD portion, making sure to leave the back-light and various filters in place. The tricky part is getting the back light to work, and even that’s not too difficult. Depending on your donor laptop it may be an LED or CCFL back light — if it’s LED, it’s pretty simple, if it’s CCFL, you’ll have to figure out how to power the inverter board to get it to work. [Victor] reverse-engineered his and found a schematic for the inverter online, throwing together a little circuit to give it power — he even added a potentiometer to have variable brightness!

Continue reading “From Broken Laptop Screen to Portable Light Table”

Wooden Case Sega Saturn Laptop

CNC'ed Wooden Case for Sega Saturn

Remember the Sega Saturn? You know, that short-lived game system of the mid 90’s. Well, [c_mon] is still a fan and decided to make a portable version with a built in screen.

As you can see from the photos, the main case is made from wood, plywood to be exact. Several pieces of the plywood were cut out using a CNC Router and laminated together to achieve the full height needed to enclose the internal electronics. The finished case takes up a little less real estate than the original, however it is slightly taller.

You may recognize the screen as an old PSOne unit. The screen was taken part and housed in it’s own wooden enclosure which is hinged to the main case. The video is supplied to the screen by a composite output from the Saturn. There is no unique CD lid either, the screen functions as one when it is folded down. For sound there are a couple built in powered speakers that tap into the stock audio output.

To ad a little pizzazz, [c_mon] routed in a groove in the top to accept some EL wire. There are also some cool engravings in the wooden case, including the Saturn Automobile Manufacturer logo on the top of the screen lid…. whoops!

CNC'ed Wooden Case for Sega Saturn


Repurposed Laptop Batteries With a Twist

Arduino with lithium ion battery

Lithium ion batteries are becoming more and more common these days, but some of the larger capacity batteries can still carry a pretty hefty price tag. After finding Acer’s motherboard schematics online and doing a little reverse-engineering, [Tiziano] has found a way to reuse batteries from his dead laptop, not only saving the batteries from the landfill but also cutting costs on future projects.

These types of batteries have been used for many things in the past, but what makes this project different is that [Tiziano] is able to monitor the status of the batteries and charge them using I2C with an Arduino and a separate power supply, freeing the batteries from the bonds of the now-useless laptop.

With this level of communication between the microcontroller and the battery pack, there is little chance of the batteries catching on fire when they’re used in another project. Since the Arduino can also monitor the current amount of charge in the batteries, there is also a reduced risk that they will be damaged from under- or over-charging.

This wasn’t just as simple as hooking up the positive and negative leads of a power supply to the battery. [Tiziano] also had to model the internal resistance of the motherboard that the battery expects to see, and get the supply voltage just right so the battery’s safety protocols wouldn’t kick in to prevent them from charging. After a few other hurdles were jumped, [Tiziano] now has a large capacity lithium ion battery at his disposal for any future projects.