a full gaming rig built into a LCD-386

A Portable Computer Living In 1988 But Also In The Future

Every once in a while, there will be a project that is light on details but inundated with glorious, drool-worthy pictures. [Nexaner7] recently showed off his cyberdeck he built over a year inside an old LCD-386. So what’s special about it? This isn’t just a Raspberry Pi or some SBC inside but a complete AMD Ryzen 5600, Nvidia RTX 3060, screen, and keyboard in a 19.5-liter space (0.68 cubic feet). Since there wouldn’t be enough space inside for decent airflow, he decided to water-cool everything, which added to the build.

the back of the sleeper LCD-386 cyberdeck

While [Nexaner7] doesn’t have a video walkthrough, he does have a build log with dozens of pictures in two parts: part 1 and part 2. As you can imagine, there were copious amounts of 3d printing for brackets and holders, trying various screens and GPUs to see what fit and what didn’t. He tried to use the original keyboard, even with a 5-pin DIN to PS2 to USB adapter, but the keyboard was flakey, likely due to rust. He dropped in a CM Quickfire TK PCB with a few modifications as it was close to the same size. He swapped the display for a 1440p portable monitor with a thin ribbon HDMI cable to route from the GPU to the screen.

We’re happy to report that the parts inside were sold to someone who restores old PC, so a somewhat rare LCD-386 wasn’t destroyed. With a gorgeous build like this, perhaps he should enter the Cyberdeck contest. Eagle-eyed readers might notice that recently we covered an LCD-386 with its contents retrieved via a hacked-together serial bus.

Hackaday Links Column Banner

Hackaday Links: July 3, 2022

Looks like we might have been a bit premature in our dismissal last week of the Sun’s potential for throwing a temper tantrum, as that’s exactly what happened when a G1 geomagnetic storm hit the planet early last week. To be fair, the storm was very minor — aurora visible down to the latitude of Calgary isn’t terribly unusual — but the odd thing about this storm was that it sort of snuck up on us. Solar scientists first thought it was a coronal mass ejection (CME), possibly related to the “monster sunspot” that had rapidly tripled in size and was being hyped up as some kind of planet killer. But it appears this sneak attack came from another, less-studied phenomenon, a co-rotating interaction region, or CIR. These sound a bit like eddy currents in the solar wind, which can bunch up plasma that can suddenly burst forth from the sun, all without showing the usually telltale sunspots.

Then again, even people who study the Sun for a living don’t always seem to agree on what’s going on up there. Back at the beginning of Solar Cycle 25, NASA and NOAA, the National Oceanic and Atmospheric Administration, were calling for a relatively weak showing during our star’s eleven-year cycle, as recorded by the number of sunspots observed. But another model, developed by heliophysicists at the U.S. National Center for Atmospheric Research, predicted that Solar Cycle 25 could be among the strongest ever recorded. And so far, it looks like the latter group might be right. Where the NASA/NOAA model called for 37 sunspots in May of 2022, for example, the Sun actually threw up 97 — much more in line with what the NCAR model predicted. If the trend holds, the peak of the eleven-year cycle in April of 2025 might see over 200 sunspots a month.

So, good news and bad news from the cryptocurrency world lately. The bad news is that cryptocurrency markets are crashing, with the flagship Bitcoin falling from its high of around $67,000 down to $20,000 or so, and looking like it might fall even further. But the good news is that’s put a bit of a crimp in the demand for NVIDIA graphics cards, as the economics of turning electricity into hashes starts to look a little less attractive. So if you’re trying to upgrade your gaming rig, that means there’ll soon be a glut of GPUs, right? Not so fast, maybe: at least one analyst has a different view, based mainly on the distribution of AMD and NVIDIA GPU chips in the market as well as how much revenue they each draw from crypto rather than from traditional uses of the chips. It’s important mainly for investors, so it doesn’t really matter to you if you’re just looking for a graphics card on the cheap.

Speaking of businesses, things are not looking too good for MakerGear. According to a banner announcement on their website, the supplier of 3D printers, parts, and accessories is scaling back operations, to the point where everything is being sold on an “as-is” basis with no returns. In a long post on “The Future of MakerGear,” founder and CEO Rick Pollack says the problem basically boils down to supply chain and COVID issues — they can’t get the parts they need to make printers. And so the company is looking for a buyer. We find this sad but understandable, and wish Rick and everyone at MakerGear the best of luck as they try to keep the lights on.

And finally, if there’s one thing Elon Musk is good at, it’s keeping his many businesses in the public eye. And so it is this week with SpaceX, which is recruiting Starlink customers to write nasty-grams to the Federal Communications Commission regarding Dish Network’s plan to gobble up a bunch of spectrum in the 12-GHz band for their 5G expansion plans. The 3,000 or so newly minted experts on spectrum allocation wrote to tell FCC commissioners how much Dish sucks, and how much they love and depend on Starlink. It looks like they may have a point — Starlink uses the lowest part of the Ku band (12 GHz – 18 GHz) for data downlinks to user terminals, along with big chunks of about half a dozen other bands. It’ll be interesting to watch this one play out.

Asus Motherboard gets CPU Upgrade Past its Specs

Clever Motherboard Hack Brings Late 90’s Motherboard Into The Early 2000’s

Some people look at specifications as a requirement, and others look at them as a challenge. You’re reading this on Hackaday, so you know where [Necroware] falls. In the video below the break, you’ll see how he takes a common mid-to-late 90’s motherboard and takes it well past its spec sheet.

A pull up resistor enables faster clock multipliers
[Necroware] does what all soldering iron ads think people do with soldering irons
Having already started with replacing the Real Time Clock with his own creation, [Necroware] looked for other opportunities to make the Asus P/I-P55TP4XEG more capable than Asus did. And, he succeeded. Realizing that the motherboard has the ability to have an external voltage regulator board, [Necroware] made one so that the Socket 7 board could supply more than a single voltage to the CPU- the very thing keeping him from upgrading from a Pentium 133 to a Pentium MMX 200.

While the upgrade was partially successful, a deep dive into the Socket 7 and Super Socket 7 documentation helped him realize the need for a pullup resistor on a strategic clocking pin. Then, [Necroware] went full Turbo and smashed this author’s favorite single core CPU of all time into the socket: the AMD K6-2 450, a CPU well beyond the original capabilities of the board.

It really goes to show that, of course, It’s All About The Pentiums. Thanks to [BaldPower] for the doing the needful and dropping this great hack into the Tip Line!

Continue reading “Clever Motherboard Hack Brings Late 90’s Motherboard Into The Early 2000’s”

Flaw In AMD Platform Security Processor Affects Millions Of Computers

Another day, another vulnerability. This time, it’s AMD’s turn, with a broad swathe of its modern CPU lines falling victim to a dangerous driver vulnerability that could leave PCs open to all manner of attacks.

As reported by TechSpot, the flaw is in the driver for AMD Platform Security Processor (PSP), and could leave systems vulnerable by allowing attackers to steal encryption keys, passwords, or other data from memory. Today, we’ll take a look at what the role of the PSP is, and how this vulnerability can be used against affected machines.

Continue reading “Flaw In AMD Platform Security Processor Affects Millions Of Computers”

Where Are All The Cheap X86 Single Board PCs?

If we were to think of a retrocomputer, the chances are we might have something from the classic 8-bit days or maybe a game console spring to mind. It’s almost a shock to see mundane desktop PCs of the DOS and Pentium era join them, but those machines now form an important way to play DOS and Windows 95 games which are unsuited to more modern operating systems. For those who wish to play the games on appropriate hardware without a grubby beige mini-tower and a huge CRT monitor, there’s even the option to buy one of these machines new: in the form of a much more svelte Pentium-based PC104 industrial PC.

Continue reading “Where Are All The Cheap X86 Single Board PCs?”

AMD Acquires Xilinx For $35 Billion

News this morning that AMD has reached an agreement to acquire Xilinx for $35 Billion in stock. The move to gobble up the leading company in the FPGA industry should come as no surprise for many reasons. First, the silicon business is thick in the age of mergers and acquisitions, but more importantly because AMD’s main competitor, Intel, purchased the other FPGA giant Altera back in 2015.

Primarily a maker of computer processors, AMD expands into the reconfigurable computing market as Field-Programmable Gate Arrays (FPGA) can be adapted to different tasks based on what bitstream (programming information written to the chips) has been sent to them. This allows the gates inside the chip to be reorganized to perform different functions at the hardware level even after being put into products already in the hands of customers.

Xilinx invented the FPGA back in the mid-1980s, and since then the falling costs of silicon fabrication and the acceleration of technological advancement have made them evermore highly desirable solutions. Depending on volume, they can be a more economical alternative to ASICs. They also help with future-proofing as technology not in existence at time of manufacture — such as compression algorithms and communications protocols — may be added to hardware in the field by reflashing the bitstream. Xilinx also makes the Zynq line of hybrid chips that contain both ARM and FPGA cores in the same device.

The deal awaits approval from both shareholders and regulators but is expected to be complete by the end of 2021.

AMD Introduces New Ryzen Mini PCs To Challenge Intel

For the majority of hacker and maker projects, the miniature computer of choice these last few years has been the Raspberry Pi. While the availability issues that seem to plague each new iteration of these extremely popular Single Board Computers (SBCs) can be annoying, they’ve otherwise proven to be an easy and economical way to perform relatively lightweight computational tasks. Depending on who you ask, the Pi 4 is even powerful enough for day-to-day desktop computing. Not bad for a device that consistently comes in under a $50 USD price point.

Intel NUC compared to the Raspberry Pi

But we all know there are things that the Pi isn’t particularly well suited to. If your project needs a lot of computing power, or you’ve got some software that needs to run on an x86 processor, then you’re going to want to look elsewhere. One of the best options for such Raspberry Pi graduates has been the Intel Next Unit of Computing (NUC).

NUCs have the advantage of being “real” computers, with upgradable components and desktop-class processors. Naturally this means they’re a bit larger than the Raspberry Pi, but not so much as to be impractical. If you’re working on a large rover for example, the size and weight difference between the two will be negligible. The same could be said for small form-factor cluster projects; ten NUCs won’t take a whole lot more space than the same number of Pis.

Unfortunately, where the Intel NUCs have absolutely nothing on the Raspberry Pi is price: these miniature computers start around $250, and depending on options, can sail past the $1,000 mark. Part of this sharp increase in price is naturally the vastly improved hardware, but we also can’t ignore that the lack of any strong competition in this segment hasn’t given Intel much incentive to cut costs, either. When you’re the only game in town, you can charge what you want.

But that’s about to change. In a recent press release, AMD announced an “open ecosystem” that would enable manufacturers to build small form-factor computers using an embedded version of the company’s Ryzen processor. According to Rajneesh Gaur, General Manager of AMD’s Embedded Solutions division, the company felt the time was right to make a bigger push outside of their traditional server and desktop markets:

The demand for high performance computing isn’t limited to servers or desktop PCs. Embedded customers want access to small form factor PCs that can support open software standards, demanding workloads at the edge, and even display 4K content, all with embedded processors that have a planned availability of 10 years.

Continue reading “AMD Introduces New Ryzen Mini PCs To Challenge Intel”