Fully fretted guitar MIDI controller

[Andy] came across this guitar midi controller project from way back and decided to send us a tip about it. The English version, translated from the original Russian, is easy to follow and documents the build process from first prototypes to the version you see above. It can connect via a standard MIDI cable and then be used to control anything you want. The only thing missing is the ability to transmit velocity data, but that’s certainly not a deal breaker.

The device has two sensory parts. The first is a set of pickups that can be seen underneath the strings near the bridge. These work like standard magnetic pickups but instead of extrapolating fret data from the pitch picked up on the string, there is a second sensor mechanism for every fret of each string. Since the strings are made of metal, it’s possible to detect which fret is depressed based on continuity sensing. Of course this means you need a conductor between every fret, and that’s why the fingerboard has been replaced with one made of printed circuit boards. All of this data is gathered, then sent to the MIDI device via a PIC 16F74 microcontroller.

If this leaves you wanting for more guitar hacks, don’t miss this one that adds addressable LEDs in between each fret.

Servoelectric guitar is a keytar with strings

servoelectric-guitar

[Keith Baxter] has undertaken something of a ‘Mount Everest’ of guitar modifications. He’s developing a Servoelectric guitar that trades frets for a keypad. It is still a guitar in the sense that it has a body, strings, and pickups to sense the strings vibrations and pass them to an amplifier. The left hand, which traditionally would shorten the strings as needed by pressing them against a fret, now changes string pitch using a keypad. This is an interesting fusion between traditional guitar and 80′s phenomenon, the keytar.

Each string is connected to a different servo motor. When a key on the keypad is pressed, the corresponding servo adjusts the tension of that string, bringing it in tune at the new pitch. His original design involved a lot of custom circuitry but he’s evolved the project to include an Arduino controller. This second generation both simplifies the control circuitry and improves upon it.

We’ve embedded some video after the break. In the first example you can see the strings adjusting for each new pitch. In the second, take a look behind the guitarist… what do you think he’s got planned for those giant capacitors?

[Read more...]