Hackaday Prize Entry : Impact – A Head Concussion Monitor

A lot of young athletes who get concussions each year go undiagnosed, leading to brain injury. [Hunter Scott] is working on a device called Impact to help detect these events early. According to this article which discusses the issue of concussion recognition and evaluation, “Early identification on the sports sideline of suspected concussion is critical because, in most cases, athletes who are immediately removed from contact or collision sports after suffering a concussion or other traumatic brain injury will recover without incident fairly quickly. If an athlete is allowed to keep playing, however, their recovery is likely to take longer, and they are at increased risk of long-term problems”

The device is a dime sized disk, which has an ATTiny85 microcontroller, memory to hold data, an accelerometer and a LED which gets activated when the preset impact threshold is breached, all driven by a coin cell. This small size allows it to be easily embedded in sports equipment such as helmets. At the end of a game, if the LED is blinking, the player is then screened for a concussion. For additional analysis, data stored on the on-board memory can be downloaded. This can be done by a pogo-pin based docking station, which is what [Hunter Scott] is still working on.

He’s having a functional problem that needs fixing. The ATTiny85 cannot be programmed with the accelerometer populated. He first needs to populate the ATTiny85, program it, and then populate the accelerometer. He’s working in fixing that, but if you have any suggestions, chime in on the comments below. We’d like to add that [Hunter] is a prolific hacker. His project, the Ultra-wideband radio module was a Hackaday Prize semi-finalist last year.


The 2015 Hackaday Prize is sponsored by:

Router Fixture for Radiusing Guitar Fretboards

Unless you’ve been up close and personal with a guitar, it’s easy to miss that the fretboard (where a guitar player presses on the strings) is not flat. There is a slight curve, the amount of which varies with the type and brand of guitar. There are even guitars with fretboards that have a compound radius that changes from one end to the other.

finger board radius cutter

[Mike] is a guitar builder and needed a way to radius his own fretboards. He did what any other DIYer would, he designed and built a tool to do exactly what he needed. The fretboard radius cutting fixture consists of a new large router base that has a curved bottom. This base rests on two metal pipes and can slide both back and forth in addition to along the new base’s curve. The flat fretboard blank is secured to the fixture below the router and is slowly nibbled away at using a standard straight flute router bit. A little sanding later and [Mike] will be able to keep moving forward on his guitar builds.

Hackaday Links: May 10, 2015

Here’s a cool crowdfunding campaign that somehow escaped the Hackaday Tip Line. It’s a remote control SpaceShipOne and White Knight. SpaceShipOne is a ducted fan that has the high-drag feathering mechanism, while White Knight is a glider. Very cool, and something we haven’t really seen in the scratchbuilding world.

[Sink] has a Makerbot Digitizer – the Makerbot 3D scanner – and a lot of time on his hands. He printed something, scanned it, printed that scan… you get the picture. It’s a project called Transcription Error.

Keurig has admitted they were wrong to force DRM on consumers for their pod coffee cups.

The Apple ][, The Commodore 64, and the Spectrum. The three kings. Apple will never license their name for retro computer hardware, and there will never be another computer sold under the Commodore label. The Spectrum, though… The Sinclair ZX Spectrum Vega is a direct-to-TV console in the vein of [Jeri Ellisworth]’s C64 joystick doohickey.

Infinity mirrors are simple enough to make; they’re just one mirror, some LEDs, and another piece of glass. How about a 3D infinity mirror? They look really, really cool.

Here’s the six-day notice for some cool events: Hamvention in Dayton, OH. [Greg Charvat] will be there, and [Robert] is offering cold drinks to anyone who mentions Hackaday. If anyone feels like scavenging for me, here’s a thread I created on the Vintage Computer Forum.  Bay Area Maker Faire is next weekend. Most of the rest of the Hackaday crew will be there because we have a meetup on Saturday night

Roswell Eat Your Heart Out

When [Ian Wood] accidentally broke the camera on his fancy-pants FPV quadrotor he was a little bit upset. But out of all things we break, we hack something new. [Ian] decided to strap on some RGB LEDs to the drone and turn it into a UFO to scare his neighbors!

Now we know what you’re thinking: RGB LEDs? That hardly constitutes a hack! You’re right — but [Ian] didn’t just simply strap some LEDs on and call it a day. Oh no. He’s using a Teensy micro-controller and the NazaCANDecoder to listen to the CAN bus for RC stick positions, flight mode, altitude, battery data, etc. This means the LEDs are actually responding to the way he flies the drone. And since there was a spare channel on his Futaba RX controller, he’s also got an animation mode that can be controlled from the ground to do whatever he wants. He also got rid of the standard indicator LEDs on the quad and wired them into his new setup. They’re all being controlled by a FastLED library on the Teensy. Check it out in the clip after the break.

Continue reading “Roswell Eat Your Heart Out”

How To Make Hardware, With Examples And An Electric Pickle

Right now we’re throwing a two-day hackathon in Pasadena. As with all hackathons, people are going to build something, but that’s only going to happen today. Yesterday was an incredible Zero to Product talk that goes over PCB layout techniques, manufacturing, and schematic capture. In a seven hour talk, our own [Matt Berggren] took the audience through building a product, in this case a little ESP8266 breakout board. We livestreamed this; the video (and electric pickles) are below.

Continue reading “How To Make Hardware, With Examples And An Electric Pickle”

DIY AC for the Hot Shop

Working out in the shop is usually super fun but if it’s summertime, watch out, it can get hot! We’ve all been there and we’ve all wished we could do something about it. Well, woodworker and general DIYer [April] has stepped up to the plate and built a portable low-buck AC unit to cool her shop down to an acceptable temperature.

The unit is very simple and starts off with an old thrift store cooler. A hole is cut in the back of the cooler to make room for a fan that is directed to blow air inside the cooler and across blocks of ice. The air cools down as it passes over the ice and leaves out the top of the cooler through five 90-degree PVC elbows. After all the inlets and outlets were caulked, the entire unit was given a monochromatic black paint job.

[April] says you can feel the cool air blowing from about 5 feet away from the unit. She has measured the output air temperature to be 58-62ºF. If using loose ice cubes, the unit will work for 2-3 hours. Freezing milk jugs full of water gets about 5 hours of use.

A Pedal Powered Cinema

When the apocalypse hits and your power goes out, how are you going to keep yourself entertained? If you are lucky enough to be friends with [stopsendingmejunk], you can just hop on his pedal powered cinema and watch whatever movies you have stored on digital media.

This unit is built around an ordinary bicycle. A friction drive is used to generate the electricity via pedal power. In order to accomplish this, a custom steel stand was fabricated together in order to lift the rear wheel off the ground. A 24V 200W motor is used as the generator. [stopsendingmejunk] manufactured a custom spindle for the motor shaft. The spindle is made from a skateboard wheel. The motor is mounted in such a way that it can be lowered to rub the skateboard wheel against the bicycle wheel. This way when the rear bicycle wheel spins, it also rotates the motor. The motor can be lifted out of the way when cruising around if desired.

The power generated from the motor first runs through a regulator. This takes the variable voltage from the generator and smooths it out to a nice even power signal. This regulated power then charges two Goal Zero Sherpa 100 lithium batteries. The batteries allow for a buffer to allow the movie to continue playing while changing riders. The batteries then power the Optomo 750 projector as well as a set of speakers.