MIDI Harp Looks Pretty Sharp

[Julien] is one of those cool dads who shows his love with time invested rather than money spent. His daughter plays the harp, and you would not believe the price of concert harps. Even the cheap ones are several thousand USD. So naturally, he decided he would build her a MIDI concert harp from the ground up.

This plucky work in progress uses a strain gauge and an AD620 amplifier on every string to detect the tension when plucked. These amplifiers are connected to Arduinos, with an Arduino every nine strings. The Arduinos send MIDI events via USB to a Raspberry Pi, which is running the open synth platform Zynthian along with Pianoteq.

The harp is strung with guitar strings painted with silver, because he wanted capacitive touch support as well. But he scrapped that plan due to speed and reliability issues. Strain past the break to check out a brief demo video.

[Julien] used strings because he wanted to anchor the harpist in tactility. But you’re right; many if not most MIDI harps use lasers.

Continue reading “MIDI Harp Looks Pretty Sharp”

Laser Harp Sounds Real Thanks To Karplus-Strong Wave Equation

The harp is an ancient instrument, but in its current form, it seems so unwieldy that it’s a wonder that anyone ever learns to play it. It’s one thing to tote a rented trumpet or clarinet home from school to practice, but a concert harp is a real pain to transport safely. The image below is unrelated to the laser harp project, but proves that portable harping is begging for some good hacks.

Concert grand harps are so big there’s special equipment to move them around. This thing’s called the HarpCaddy

Enter this laser harp, another semester project from [Bruce Land]’s microcontroller course at Cornell. By replacing strings with lasers aimed at phototransistors, [Glenna] and [Alex] were able to create a more manageable instrument that can be played in a similar manner. The “strings” are “plucked” with the fingers, which blocks the laser light and creates the notes.

But these aren’t just any old microcontroller-generated sounds. Rather than simply generating a tone or controlling a synthesizer, the PIC32 uses the Karplus-Strong algorithm to model the vibration of a plucked string. The result is very realistic, with all the harmonics you’d expect to hear from a plucked string. [Alex] does a decent job putting the harp through its paces in the video below, and the write-up is top notch too.

Unique musical instruments like laser harps are far from unknown around these parts. We’ve seen a few that look something like a traditional harp and one that needs laser goggle to play safely, but this one actually looks and sounds like the real thing. Continue reading “Laser Harp Sounds Real Thanks To Karplus-Strong Wave Equation”

One String, One Print, One Harp

To exclude musical instruments in the overflowing library of possibility that 3D printing enables would be a disservice to makers and musicians everywhere. For the minds over at [Makefast Workshop], an experimental idea took shape: a single stringed harp.

The TuneFast Harp needed enough notes for a full octave, robust enough to handle the tension of the string, a single tuning mechanism and small enough to print. But how to produce multiple notes on a harp out of only one string? V-grooved bearings to the rescue! The string zig-zags around the bearings acting as endpoints that rotate as its tuned, while the rigid PLA printing filament resists deforming under tension.

After a bit of math and numerous iterations — ranging from complete reconfigurations of part placements to versions using sliding pick mechanisms using magnets! — a melodic result!

Continue reading “One String, One Print, One Harp”

Sparkfun’s Alternate Reality Hardware

SparkFun has a new wing of hardware mischief. It’s SparkX, the brainchild of SparkFun’s founder [Nate Seidle]. Over the past few months, SparkX has released breakout boards for weird sensors, and built a safe cracking robot that got all the hacker cred at DEF CON. Now, SparkX is going off on an even weirder tangent: they have released The Prototype. That’s actually the name of the product. What is it? It’s a HARP, a hardware alternate reality game. It’s gaming, puzzlecraft, and crypto all wrapped up in a weird electronic board.

The product page for The Prototype is exactly as illuminating as you would expect for a piece of puzzle electronics. There is literally zero information on the product page, but from the one clear picture, we can see a few bits and bobs that might be relevant. The Prototype features a microSD card socket, an LED that might be a WS2812, a DIP-8 socket, a USB port, what could be a power switch, a PCB antenna, and a strange black cylinder. Mysteries abound. There is good news: the only thing you need to decrypt The Prototype is a computer and an open mind. We’re assuming that means a serial terminal.

The Prototype hasn’t been out for long, and very few people have one in hand. That said, the idea of a piece of hardware sold as a puzzle is something we haven’t seen outside of conference badges. The more relaxed distribution of The Prototype is rather appealing, and we’re looking forward to a few communities popping up around HARP games.

MIDI Keyboard With Frickin’ Laser Keys

MIDI instruments are cool, but they’re not laser cool. That is, unless you’ve added lasers to your MIDI instrument like [Lasse].

[Lasse] started out with an old MIDI keyboard. The plan was to recycle an older keyboard rather than have to purchase something new. In this case, the team used an ESi Keycontrol 49. They keyboard was torn apart to get to the creamy center circuit boards. [Lasse] says that most MIDI keyboards come withe a MIDI controller board and the actual key control board.

Once the key controller board was identified, [Lasse] needed to figure out how to actually trigger the keys without the physical keyboard in place. He did this by shorting out different pads while the keyboard was hooked up to the computer. If he hit the correct pads, a note would play. Simple, but effective.

The housing for the project is made out of wood. Holes were drilled in one piece to mount 12 laser diodes. That number is not arbitrary. Those familiar with music theory will know that there are 12 notes in an octave. The lasers were powered via the 5V source from USB. The lasers were then aimed at another piece of wood.

Holes were drilled in this second piece wherever the lasers hit. Simple photo resistors were mounted here. The only other components needed for each laser sensor were a resistor and a transistor. This simple discreet circuit is enough to simulate a key press when the laser beam is broken. No programming or microcontrollers required. Check out the demonstration video below to see how it works. Continue reading “MIDI Keyboard With Frickin’ Laser Keys”

Air Harp Using The Leap Motion

leap-motion-air-harp

He’s just pointing in this image, but this Air Harp can be played using many fingers as once. It’s a demonstration which [Adam Somers] threw together in one weekend when working with the Leap Motion developer board. We first heard about this slick piece of hardware back in May and from the looks of it this is every bit as amazing as first reported.

Part of what made the project come together so quickly is that [Adam] had already developed a package called muskit. It’s a C++ toolkit for making music applications. It puts the framework in place what we hear in the video after the break. The weekend of hacking makes use of the positional data from the Leap Motion and handles how your digits interact with the virtual strings. You can watch as [Adam] adds more and more strings to the virtual instrument for his finger to interact with. The distance from the screen is what decided is your finger will pluck or not. This is indicated with a red circle when your fingertip is close enough to interact with the phantom string.

Get your hands on the code from his repositories.

Continue reading “Air Harp Using The Leap Motion”

Electromagnetic Harp With Home Made Ebows

Fresh from the Arduino subreddit comes [dataplex]’s 26 string electromagnetic harp. It’s a very cool, ambient instrument that sounds simply phenomenal through the Space Echo and Fender Twin rig [dataplex] has.

There’s not much in the way of build details, but judging from this post [dataplex] made several months ago the instrument works on the same principles as an Ebow. There’s a great prototype video showing the hardware and software. One small voice coil reads each string. A tiny op-amp sends this to another voice coil and back into the string. There’s tons of feedback, but it’s great for an ethereal ambiance.

The prototype is controlled by an Arduino via a computer, but for the final build [dataplex] moved on to a copper/zinc touch interface on the front of the harp.

It’s a very, very cool instrument and we’re waiting patiently for the build details to be released. You can check out the videos of [dataplex]’s work after the break.

Continue reading “Electromagnetic Harp With Home Made Ebows”