This Found-Sound Organ Was Made With Python And A Laser Cutter

Some readers will no doubt remember attaching a playing card to the front fork of their bicycle so that the spokes flapped the card as the wheel rotated. It was supposed to sound like a motorcycle, which it didn’t, but it was good, clean fun with the bonus of making us even more annoying to the neighborhood retirees than the normal baseline, which was already pretty high.

[Garett Morrison]’s “Click Wheel Organ” works on much the same principle as a card in the spokes, only with far more wheels, and with much more musicality. The organ consists of a separate toothed wheel for each note, all turning on a common shaft. Each wheel is laser-cut from thin plywood, with a series of fine teeth on its outer circumference. The number of teeth, as calculated by a Python script, determines the pitch of the sound made when a thin reed is pressed against the spinning wheel. Since the ratio of teeth between the wheels is fixed, all the notes stay in tune relative to each other, as long as the speed of the wheels stays constant.

The proof-of-concept in the video below shows that speed control isn’t quite there yet — playing multiple notes at the same time seems to increase drag enough to slow the wheels down and lower the pitch for all the notes. There appears to be a photointerrupter on the wheel shaft to monitor speed, so we’d imagine a PID loop to control motor speed might help. That and a bigger motor that won’t bog down as easily. As for the sound, we’ll just say that it certainly is unique — and, that it seems like something [Nicolas Bras] would really dig.

Continue reading “This Found-Sound Organ Was Made With Python And A Laser Cutter”

Unique Instrument Plucks Out Notes On A Ruler

How does one describe the notes that come from a ruler that is anchored on one end and then plucked? The best word we can come up with is “wubulation”. So would that make this ruler-plucking synthesizer a “wubulator”? Or perhaps a “wubatron”?

Whatever we decide to call it, [Dmitry Morozov] dubbed it the RBS-20, or “ruler bass synth, 20-cm”, for the 20-cm stainless steel ruler that forms the heart of the instrument. The ruler is attached to a linear slide which varies the length of the sprung section. A pair of servos can pluck the free section of the ruler in two different places, providing notes in different registers, while another pair of servos control metal fingers that can damp the vibration, change the sustain, and alter the notes. There’s no resonator; the sounds are instead picked up by a piezo mic. Twelve keys on the base of the instrument can be programmed for various lengths, and an OLED display gives the musician feedback. The video below shows the instrument wubulating, and brings us back to those desktop jam sessions in our grade school days — at least until the rulers were confiscated.

We’ve covered a ton of similarly unique musical instruments before, like this hybrid synthesizer-violin, a symphony of soda bottles, and inexplicably, a leg guitar.

Continue reading “Unique Instrument Plucks Out Notes On A Ruler”

Unique Musical Instrument Defies Description

Since the first of our ancestors discovered that banging a stick on a hollow log makes a jolly sound, we hominids have been finding new and unusual ways to make music. We haven’t come close to tapping out the potential for novel instruments, but then again it’s not every day that we come across a unique instrument and a new sound, as is the case with this string-plucking robot harp.

Named “Greg’s Harp” after builder [Frank Piesik]’s friend [Gregor], this three-stringed instrument almost defies classification. It’s sort of like a harp, but different, and sort of like an electric guitar, but not quite. Each steel string has three different ways to be played: what [Frank] calls “KickUps”, which are solenoids that strike the strings; an “eBow” coil stimulator; and a small motor with plastic plectra that pluck the strings. Each creates a unique sound at the fundamental frequency of the string, while servo-controlled hoops around each string serve as a robotic fretboard to change the notes. Sound is picked up by piezo transducers, and everything is controlled by a pair of Nanos and a Teensy, which takes care of MIDI duties.

Check out the video below and see if you find the sound both familiar and completely new. We’ve been featuring unique instruments builds forever, from not-quite-violins to self-playing kalimbas to the Theremincello, but we still find this one enchanting.

Continue reading “Unique Musical Instrument Defies Description”

Delta Bot Plucks Out Tunes On A Mandolin

Is there no occupation safe from the scourge of robotic replacement? First it was the automobile assemblers, then fast food workers, and now it’s the — mandolin players?

Probably not, unless [Clayton Darwin]’s mandolin playing pluck-bot has anything to say about it. The pick-wielding delta-ish robot can be seen in action in the video below, plucking out the iconic opening measures of that 70s prom-theme favorite, “Colour My World.” The robot consists of two stepper motors connected to a hinged wooden arm by two pushrods. We had to slow the video down to catch the motion, but it looks like [Clayton] has worked out the kinematics so that the pick can be positioned in front of any of the mandolin’s eight strings. A quick move of the lower stepper then flicks the pick across a string and plucks it. [Clayton] goes into some detail about how he built the motion-control part in an earlier video; he also proves that steppers are better musicians than we’ll ever be with a little “Axel F” break.

It’s only a beginning, of course, but the complexity of the kinematics just goes to show how simple playing an instrument isn’t. Unless, of course, you unleash an endless waterfall of marbles on the problem.

Continue reading “Delta Bot Plucks Out Tunes On A Mandolin”

Electronic Guitar Pick Tunes The Strings For You

The Stimmmopped is an electronic guitar tuner made to be used as a guitar pick. This uses two LEDs synchronized to blink at the exact frequency of the string you are tuning. Pluck the string with the corner of the PCB and then shine the light on the string you are tuning. As the vibrating string moves back and forth it will only pick up the spot of light when the frequency matches that of the blinking LED. Once in tune, both red lights will appear to be constantly illuminated and immobile on the string.

An Atmel ATmega8 is used to control the device, interfacing with two buttons and a seven-segment display to choose the pitch currently being tuned. Gibson has a robotic guitar that features an auto-tuning mode, but if you don’t want to shell that much this low cost and simple build is for you.

[Thanks Sören]