Compile A Hydroponics System From Source

Tending to a garden is usually a rewarding endeavor, as long as there is good soil to work with. If there isn’t, it can either get frustrating quickly having to deal with soils like sand or hard clay, or it can get expensive by having to truck in compost each year. Alternatively, it’s possible to set up systems of growing plants that don’t need any soil at all, although this requires an automated system otherwise known as hydroponics to manage water and nutrients sent to the plants.

This setup by [Kyle] is unique in that it uses his own open-source software which he calls Mycodo to control the hydroponic system. It is loaded onto a Raspberry Pi 4 (which he notes can now be booted from a USB drive instead of an SD card) which controls all of the peripherals needed for making sure that the water has the correct amount of nutrients and chemical composition.

The build is much more than just a software control panel, though. [Kyle] walks through every part of setting up a small hydroponic system capable of effectively growing 15-20 plants indoors. He grows varieties of lettuce and basil, but this system can work for many more types of plants as well. With just slight variations, a similar system can not only grow plants like these, but fish as well.

Continue reading “Compile A Hydroponics System From Source”

Build Your Own Hydroponic Wheel

Hydroponics is an effective way of growing plants indoors through the use of water medium and artificial lighting. It often involves having a system to raise and lower the water level around the plants to let the roots breathe, however this can require some non-trivial plumbing. [Peter] wanted to instead explore the realm of wheel hydroponics to grow some ingredients for salad.

The idea is to have pods mounted on a rotating assembly, similar to the carriages on a Ferris Wheel. By rotating the wheel slowly, each pod spends a certain amount of time submerged, and a certain amount of time in free air. This allows the water level to remain constant and only the pods need to move.

The tank for the build is a simple plastic storage bin from a local hardware store, with the wheel assembled from various odds and ends and laser cut components, making this a build very possible for those with access to a hackerspace. A stepper motor provides the motive power, with the assembly completing approximately one rotation per hour.

[Peter] has run the device for several months now, noting that there are issues with certain plants maintaining their hold to the wheel, as well as algae growth in the water medium. There’s room for development but overall, it’s a great build and we hope [Peter] will be serving up some delicious fresh salads soon.

For another take, perhaps you’d like your hydroponics solar powered?

[Thanks Nils!]

Automated Vacuum Lettuce Seed Placement

[Jethro Tull] is a name you may well associate with a 1970s prog/folk rock band featuring a flautist, but the original [Tull] was an inventor whose work you benefit from every day. He was a British lawyer and landowner who lived over the turn of the 18th century, and who invented among other things the mechanical seed drill.

Were [Tull] alive today he would no doubt be impressed by the work of [Akash Heimlich], who has created an exquisite vacuum seed placer for his rooftop hydroponic lettuce farm. Unlike the continuous rows of seed on the Berkshire earth of [Tull]’s farm, the lettuce seed must be placed in an even grid on a foam substrate for the hydroponic equivalent. This was an extremely tedious task when done by hand, so [Akash] set about automating the process with a vacuum seeder that is a thing of beauty.

It uses a simple yet effective mechanism involving a row of pipettes connected to a vacuum line, that are rotated over a vibrating hopper of seeds from which each one collects a single seed, before being rotated back over the foam where the seeds are dropped in a neat row through 3D-printed funnels. The foam is advanced, and the process is repeated until there is a neat grid of seeds. In only four minutes it can deliver 150 seeds, reducing several hours work into under half an hour.

The whole machine is controlled by an Arduino, with a couple of stepper motors to move foam and pipettes alongside the vibrator motor. You can see its operation in the video below the break.

Continue reading “Automated Vacuum Lettuce Seed Placement”

Hackaday Prize Entry: Automated Hydroponics

This team project for the Hackaday Prize is a solution to a rather important problem. Imagine growing plants for use as biomarkers for pollution. It’s a great idea, but how do you grow the plants in the first place? This team is building a space-saving hydroponic system that packs the most green into the least amount of space. It’s simple, and can be built almost entirely with parts from the local home supply store.

The design of this hydroponic system is based on a few PVC pipes, arranged vertically, joined together with a few 90 degree bends. In each course of pipe, a few holes are drilled to accept a plastic cup. This cup is filled with some sort of growing medium, and the Genuino-based controller takes care of everything else. Watering the plants, turning the lights on and off, and recording the nutrient concentration of the water is all possible with a simple microcontroller.

Right now the team has a huge stack of perforated PVC pipe and a Genuino-based brain box that takes care of everything plants need. It’s going to take a bit of time for the plants to grow, but this is still one of the most compact hydroponic systems we’ve seen.

You can check out a video of the entire setup below.

Continue reading “Hackaday Prize Entry: Automated Hydroponics”

Hackaday Prize Entry: Open Source Hydroponic Monitoring System

A few months ago, [Adam] was building a controller system for a small hydroponic system he had set up in his basement. Since then, the Hackaday Prize was announced, and given the theme – saving the world one plant at a time – he’s renvisioning his garden control and monitoring system as a Hackaday Prize entry.

While the mechanical and green part of the build is exactly what you would expect from something designed from hardware store parts, the electronics are rather interesting. All the plants in either a hydroponic or dirt-based setup will have their moisture level and PH monitored by a a set of electronics that push data up to the cloud.

The current hardware setup includes a DyIO, a very cool dev platform with 24 digital I/Os and 24 servo outputs, a Raspberry Pi, and a few module boards loaded up with ARM microcontrollers and an ESP8266. [Adam] is hitting all the hardware on this build.

So far, [Adam] has a few boards sent out to a board fab, including an analog sensor module, a digital sensor module. a WiFi module hub, and a few bits and bobs that make integration into an existing garden or hydroponic setup easier. It’s a great project for this year’s Hackaday Prize, and proof that you don’t need to come up with a new build to submit something.


The 2015 Hackaday Prize is sponsored by: