Check Soil Moisture At A Glance With This Useful Display

Keeping soil moist is key to keeping most plants happy. It can be a pain having to dip one’s fingers into dirty soil on the regular, so it’s desirable to have a tool to do the job instead. [Andrew Lamchenko] built a capable soil moisture monitor, and equipped it with an E-ink display for easy readings at a glance.

The device is built around the NRF52810 or other related NRF52 microcontrollers, which run the show. Rather than using an off-the-shelf sensor to determine soil conditions, an LMC555CMX timer chip is used, a variant of the classic 555 timer designed for low power consumption. Combined with the right PCB design, this can act as a moisture sensor by detecting capacitance changes in the soil. The sensor is also able to send data using the MySensor protocol, allowing it to be used as a part of a home automation system.

The soil is tested periodically with the moisture sensor, and displayed on the attached e-ink screen. Since the e-ink display requires no electricity except when rewriting the display, this allows the sensor to operate for long periods without using a lot of battery power. The soil can be checked, the display updated, and then the entire system can be put to sleep, using tiny amounts of power until it’s time to test the soil again.

It’s a great example of design for low power applications, where component selection really is everything. We’ve featured [Andrew]’s projects before; he’s long been a fan of using e-ink displays to create long-lasting, low power budget sensor platforms. Video after the break.

Continue reading “Check Soil Moisture At A Glance With This Useful Display”

Fertilizing Plants With A Custom 3D-Printed Pump

For all but the most experienced gardeners and botanists, taking care of the soil around one’s plants can seem like an unsolvable mystery. Not only does soil need the correct amount of nutrients for plants to thrive, but it also needs a certain amount of moisture, correct pH, proper temperature, and a whole host of other qualities. And, since you can’t manage what you can’t measure, [Jan] created a unique setup for maintaining his plants, complete with custom nutrient pumps.

While it might seem like standard plant care on the surface, [Jan]’s project uses a peristaltic pump for the nutrient solution that is completely 3D printed with the exception of the rollers and the screws that hold the assembly together. With that out of the way, it was possible to begin adding this nutrient solution to the plants. The entire setup from the pump itself to the monitoring of the plants’ soil through an array of sensors is handled by an ESP32 running with help from ESPHome.

For anyone struggling with growing plants indoors, this project could be a great first step to improving vegetable yields or even just helping along a decorative houseplant. The real gem is the 3D printed pump, though, which may have wider applications for anyone with a 3D printer and who also needs something like an automatic coffee refilling machine.

Your Plants Can Take Care Of Themselves Now

One of [Sasa]’s life goals is to be able to sit back in his home and watch as robots perform all of his work for him. In order to work towards this goal, he has decided to start with some home automation which will take care of all of his house plants for him. This project is built from the ground up, too, and is the first part of a series of videos which will outline the construction of a complete, open-source plant care machine.

The first video starts with the sensors for the plants. [Sasa] decided to go with a completely custom module based on the STM32 microcontroller since commercial offerings had poor communications designs and other flaws. The small board is designed to be placed in the soil, and has sensors for soil moisture as well as other sensors for amount of light available and the ambient temperature. The improvements over the commercial modules include communication over I2C, allowing a large number of modules to communicate over a minimum of wires and be arranged in any way needed.

For this build everything is open-source and available on [Sasa]’s GitHub page, including PCB layouts and code for the microcontrollers. We’re looking forward to the rest of the videos where he plans to lay out the central unit for handling all of these sensors, and a custom dashboard for controlling them as well. Perhaps there will also be an option for adding a way to physically listen to the plants communicate their needs as well.

Continue reading “Your Plants Can Take Care Of Themselves Now”

Simulate Climate With An Arduino

Greenhouses create an artificial climate specifically suited to the plants you want to grow. It’s done by monitoring conditions like temperature and humidity, and making changes using things like vents, fans, irrigation, and lighting fixtures to boost temperature. But how do you know when it’s time to up the humidity, or vent some of the heat building up inside? The easy way is to use the Arduino-powered Norman climate simulator from [934Virginia] which leverages data from different locations or times of year based on NOAA weather data to mimic a particular growing environment.

Norman relies on a simple input of data about the target location, working from coordinates and specified date ranges to return minimum/maximum values for temperature and humidity weather conditions. It makes extensive use of the Dusk2Dawn library, and models other atmospheric conditions using mathematical modeling methods in order to make relatively accurate estimates of the target climate. There are some simulations on the project’s Plotly page which show what this data looks like.

This data is used by [934Virginia’s] Arduino library to compare the difference between your target climate and actual sensor readings in your greenhouse. From there you can make manual changes to the environment, or if you’re luck and already have an Arduino-based greenhouse automation system the climate adjustments can be done automatically. The project is named after Norman Borlaug, a famous soil scientist and someone worth reading about.

Editor’s Note: This article has been rewritten from the original to correct factual errors. The original article incorrectly focused on replicating a climate without the use of sensors. This project does require sensors to compare actual greenhouse conditions to historic climate conditions calculated by the library. We apologize to [934Virginia] for this and thank them for writing in to point out the errors.

Images courtesy of Wikimedia Commons.

Sensing Soil Moisture: You’re Doing It Wrong!

If you compulsively search online for inexpensive microcontroller add-ons, you will see soil moisture measurement kits. [aka] built a greenhouse with a host of hacked hardware including lights and automatic watering. What caught our attention among all these was Step 5 in their instructions where [aka] explains why the cheap soil sensing probes aren’t worth their weight in potting soil. Even worse, they may leave vacationers with a mistaken sense of security over their unattended plants.

The sensing stakes, which come with a small amplifier, work splendidly out of the box, but if you recall, passing current through electrodes via moisture is the recipe for electrolysis and that has a pretty profound effect on metal. [Aka] shows us the effects of electrolysis on these probes and mentions that damaged probes will cease to give useful information which could lead to overworked pumps and flooded helpless plants.

There is an easy solution. Graphite probes are inexpensive to make yourself. Simply harvest them from pencils or buy woodless pencils from the art store. Add some wires and hold them with shrink tube, and you have probes which won’t fail you or your plants.

Here’s some garden automation if this only whet your whistle, and here’s a robotic friend who takes care of the weeds for you.

The Hackaday Prize: Growing Your Own Soil

When a rainforest is clearcut for agricultural use, we only see the surface problems: fewer trees, destruction of plant and animal habitats, and countless other negative effects on the environment. A lurking problem, however, is that the soil is often non-ideal for farming. When the soil is exhausted, the farmers move further into the rainforest and repeat the process.

In the Amazon, however, there are pockets of man-made soil that are incredibly nutrient-dense. Figuring out how to make this soil, known as Terra Preta, on a massive scale would limit the amount of forest destruction by providing farmers a soil with more longevity which will, in turn, limit the encroachment on the rainforest. That’s the goal of this Hackaday Prize entry by [Leonardo Zuniga]: a pyrolysis chemical reactor that can make this soil by turning organic matter into a type of charcoal that can be incorporated into the soil to make Terra Preta.

As a bonus to making this nutrient-dense soil on a massive scale, this reactor also generates usable energy as a byproduct of processing organic waste, which goes several steps beyond simple soil enrichment. If successful and scalable, this project could result in more efficient farming techniques, greater yields, and, best of all, less damage to the environment and less impact on the rainforests.

Using Backscatter Radio For A Soil Sensor Network

With almost 8 billion souls to feed and a changing climate to deal with, there’s never been a better time to field a meaningful “Internet of Agriculture.” But the expansive fields that make industrial-scale agriculture feasible work against the deployment of sensors and actuators because of a lack of infrastructure to power and connect everything. So a low-power radio network for soil moisture sensors is certainly a welcome development.

We can think of a lot of ways that sensors could be powered in the field. Solar comes to mind, since good exposure to the sun is usually a prerequisite for any cropland. But in practice, solar has issues, the prime one being that the plants need the sun more, and will quickly shade out low-profile soil-based sensors.

That’s why [Spyros Daskalakis] eschewed PV for his capacitive soil moisture sensors in favor of a backscatter technique very similar to that used in both the Great Seal Bug and mundane RFID tags alike. The soil sensor switches half of an etched PCB bowtie antenna in and out of a circuit at a frequency proportional to soil moisture. A carrier signal from a separate transmitter is reflected off the alternately loaded and unloaded antenna, picking up subcarriers with a frequency proportional to soil moisture. [Spyros] explains more about the sensor design and his technique for handling multiple sensors in his paper.

We really like the principles [Spyros] leveraged here, and the simplicity of the system. We can’t help but wonder what sort of synergies there are between this project and the 2015 Hackaday Prize-winning Vinduino project.

Continue reading “Using Backscatter Radio For A Soil Sensor Network”