Grass Gauge Tells You When The Lawnmower’s Catcher Is Full

If you’re not mowing your lawn regularly, you’re probably familiar with the hassle of overfilling your catcher. Grass clippings end up scattered everywhere, and you end up with a messy yard after all your hard work. [Dominic Bender] designed a mower fill gauge to eliminate this problem which shows you when your catcher is getting full.

The concept behind the gauge’s operation is simple. Catcher-based mowers rely on airflow from the spinning blades to carry grass into the catcher. That airflow is, in this case, also used to push up a flap mounted in the top of the catcher. As the catcher fills with grass, that airflow no longer reaches the flap, which sinks down, indicating the catcher is getting full. The basic design is a simple 3D printed flap and housing that uses a short piece of filament as a hinge. There’s also a small mesh guard to stop the flap getting clogged by the incoming grass clippings.

If you’re the forgetful sort, or your enthusiastic children aren’t always emptying the catcher when they should, this gauge might be a useful tool for you. Alternatively, consider robotizing your mowing in the vein of other builds we’ve seen, including one by yours truly. If you’ve got your own nifty gardening hacks, be sure to drop us a line!

2022 Hackaday Prize: Plant Monitoring System Grows To Include LoRa

Change on industrial scales is slow, but if you’re operating your own small farm or simply working in a home garden there are some excellent ways to use water more effectively. The latest tool from [YJ] makes it possible to use much less water while still keeping plant yields high.

This is an improvement on a previous project which automates watering and lighting of a small area or single pot. This latest creation, called FLORA, includes a LoRa module for communication up to 3 kilometers, and the ESP32 on board also handles monitoring of soil moisture, humidity and other sensors. It also includes a pump driver for managing irrigation systems so that smart decisions can be made about when to water. Using this device, the water usage when testing was reduced by around 30% compared to a typical timed irrigation system.

Using a smart system like this is effective for basically any supply of water, but for those who get water from something like an off-grid rainwater system or an expensive water utility, the gains are immediate. If you aren’t already growing your own food to take advantage of tools like this, take a look at this primer to get you started.

Building The Most High-Tech Pond In The Neighborhood

What do you think of when you hear the word pond? If you’re like most people, it conjures up images of a simple water-filled hole in the ground, maybe with a few fish added in for good measure. But not [Anders Johansson] — his pond is a technical marvel, utilizing more unique pieces of hardware and software than many of the more traditional projects that have graced these projects over the years.

In fact, this is one of those projects that is so grand in scope that any summary we publish here simply can’t do it justice. The aptly-named Poseidon project is built up of several modular components, ranging from an automated fish feeder to an array of sensors to monitor the condition of the water itself. How many other ponds can publish their current water level, pH, and oxygen saturation over MQTT?

The ESP8266 fish feeder is just one element of Poseidon

[Anders] has provided schematics, 3D models, and source code for all the various systems built into the pond, but the documentation is where this project really shines. Each module has it’s own detailed write-up, which should provide you with more than enough guidance should you want to recreate or remix what he’s put together. Even if you use only one or two of the modules he’s put together, you’ll still be ahead of the game compared to the chumps who have to maintain their pond the old fashioned way.

In the past we’ve seen projects that tackled some of the individual elements [Anders] has developed, such as 3D printed fish feeders, but after searching through the archives we can’t find anything that’s even half as ambitious as Poseidon. At least, not for ponds. It reminds us more of a highly advanced aquaponics setup, and we wonder if that might not be a possible spin-off of the core project in the future.

Watering The Garden With A Solar-Powered System

Watering the garden is important to do regularly if you want your plants to thrive. [Nikodem Bartnik] built a system to handle it for him, keeping his garden on the grow.

The system has an Arduino commanding an irrigation system based around a pump delivering water from a reservoir. It’s paired with a water level sensor to keep an eye on the water available to the system. Moisture sensors are also used to monitor the prevailing soil conditions, to ensure the plants aren’t over- or under-watered. In this case, [Nikodem] designed his own resistive moisture sensors, which proved difficult but taught him a lot along the way. verything was then wrapped up in a food container to make it waterproof for installation outside. A solar panel and charging system was also installed to power the whole setup without requiring a mains connection.

While this system worked, the moisture sensors were a bit unreliable and there was a lot of cabling involved. A second revision got rid of the sensors and used a Pi Pico to implement a simple timer-based irrigation scheme.

Either way, both systems worked and helped keep the vital water flowing to the garden bed. Automatic plant watering is a bit of a popular theme around here, and we’ve seen some nifty hacks in that realm of late. Video after the break.

Continue reading “Watering The Garden With A Solar-Powered System”

Weed Eater String Made From Plastic Bottles

For those who don’t mind constantly adding tiny but measurable amounts of microplastics to their landscaping, string trimmers are an excellent way of maintaining edging around garden beds, trimming weeds, or maintaining ground covers on a steep hill. One problem with them, though, is that not only is the string consumable but it can be expensive. Plus, if you have a trimmer with a proprietary spool you need to hope the company never goes out of business. Or, you can simply refill your string spool with this handy tool.

The build uses plastic bottles to create the string from what would likely become garbage anyway. First, a sharp roller-style knife slices the plastic into a long thin strip. Once cut, it is fed through a heater similar to a hot end on a 3D printer which allows the plastic to be deformed or forged into a cylinder. From there the plastic is added onto a spool, which also has the motor in it that drives the entire mechanism. In this case it is using an old variable-speed drill.

From the comments on the video, there is some discussion about the economics of using this string in a weed eater. It’s likely the plastic won’t last as long as specialty string trimmer string, and the time and expense of making the plastic may never save much money. But we have to give credit to the ingenuity nonetheless. And, if you’re really into recycling plastic just for the sake of keeping it out of the landfill, there are plenty of other ways to go about accomplishing that goal.

I will NEVER buy weed whip line again! from landscaping

Protect Your Tomatoes With A 9V Battery

Growing fresh vegetables at home is a popular pastime, even moreso in a year when we’ve all been locked inside. However pests can easily spoil a harvest, potentially putting a lot of hard work down the drain. [Matt] of [DIY Perks] isn’t one to give up his tomatoes without a fight, however, and came up with a solution to protect his plants.

The trick is to take advantage of the mildly conductive slime excreted by snails as they travel along the ground. To protect potted plants, [Matt] places two strips of copper tape around the perimeter of the pot, spaced about a centimeter apart. Each strip is connected to one terminal of a 9 V battery. When a snail attempts to cross the strips, it completes a circuit between the two, and the electrical current that flows irritates the snail, forcing it to retreat.

[Matt] notes that no snails were harmed in the making of the video, and that the solution is far kinder to the slimy critters than poisons or traps. He also goes so far as to demonstrate alternative solutions for garden beds, as well. We’ve more commonly seen [Matt] working with lighting, though it’s great to see he has a bit of a green thumb, too. Video after the break.

Continue reading “Protect Your Tomatoes With A 9V Battery”

Tend Your Garden… Again

In the early 1940s, several countries saw an incredible shift in agriculture. What were called “victory gardens” were being planted en masse by people from all walks of life, encouraged by various national governments around the world. Millions of these small home gardens sprang up to help reduce the price of produce during World War 2, allowing anyone with even the tiniest pot of soil to contribute to the war effort.

It’s estimated that in 1943 alone, victory gardens accounted for around one third of all vegetables produced in the United States. Since then, however, the vast majority of these productive gardens have been abandoned in favor of highly manicured, fertilized, irrigated turfgrass (which produces no food yet costs more to maintain), but thanks to the recent global pandemic there has been a resurgence of people who at least are curious about growing their own food again, if not already actively planting gardens. In the modern age, even though a lot of the folk knowledge has been lost since the ’40s, planting a garden of any size is easier than ever especially with the amount of technology available to help.

As someone who not only puts food on the table as a writer for a world-renowned tech website but also literally and figuratively puts food on the table as a small-scale market farmer, there are a few things that I’ve learned that I hope will help if you’re starting your first garden.

Continue reading “Tend Your Garden… Again”