The Many Faces Of JTAG

Wouldn’t it be great if there were just one standard for attaching to, programming, and debugging hardware?  If you could just plug in and everything would just work? Dream on, dreamer! But of course we hobbyists aren’t the only people to suffer from multiple standards. Industry has the same problems, writ large. In response to the proliferation of smart devices — microcontrollers, sensors, and their friends — on any given PCB makes it difficult to test them all, much less their function as a system.

The Joint Test Action Group (JTAG) got together in the mid-80s to make automated testing of circuit boards a standardized process. A JTAG port can be found on almost any piece of consumer electronics with enough brains to warrant it, and it’s also a tremendously useful entry point for debugging your own work and hacking into other’s. You’re going to need to use JTAG someday.

Implemented right, it’s a very cool system that lets you test any compliant IC on the board all from a single connector. It’s mostly used by hackers for its ability to run and halt individual processors, and put them in debugging modes, inspecting their memory states, etc. Essentially every microcontroller responds to JTAG commands, and it’s an incredibly widespread and powerful standard. A victory for rationality and standardization!

The connector pinout was, of course, left up to the manufacturer. The horror!

Five Signals

In principle, JTAG uses five signal lines. They form a chain starting at the debugger, where one device’s output is the next device’s input, until the result is returned back to the debugger.

654px-jtag_chain
JTAG, as imagined by Vindicator CC BY 2.5
  • Test Data In (TDI) is the input from the debugger
  • Test Data Out (TDO) is the return end of the chain
  • Test Clock (TCK) clocks this data along synchronously, similarly to SPI
  • Test Mode Select (TMS) lets the devices know that they’re being debugged — it’s a global chip select
  • Test Reset (TRST) is an optional signal that resets all devices in the chain

Continue reading “The Many Faces Of JTAG”

Extech Power Supply: If It Ain’t Broke, Fix It Anyway

[Wolf] came into possession of an Extech power supply that wasn’t quite in working order. It has been used in battery manufacturing and was fairly corroded. He was able to fix it but found there was an issue with the power supply that wasn’t a defect. By design when you turn off the outputs, the voltmeters read zero. That means you can’t adjust the voltage to a known value without turning on the outputs. Sure, you ought to disconnect things before you adjust, but you can only hope you’ll remember.

At first, he tried to use the existing output control switch, but that really cut power. Instead, he turned to a small microcontroller board usually used for servo control. He added a few nice looking pushbuttons to the front panel. There was plenty of room in the enclosure to mount the controller board and four relays. You can see the final result in the video below.

Continue reading “Extech Power Supply: If It Ain’t Broke, Fix It Anyway”

[Fran Blanche] Goes In-Depth With The Maillardet Automaton

We’re not specialists, but the Maillardet Automaton is one of the more amazing mechanical machines that we’ve seen in a while, and [Fran Blanche] got to spend some time with it in an attempt to figure out how it’s mysterious missing pen apparatus would have worked. The resulting video, embedded below, is partially her narrative about the experiment she’s running, and part straight-up mechanical marvel.

If you need a refresher course on Maillardet’s Automaton, we’ll send you first to Wikipedia, and then off to watch this other video , which has a few great close-ups of the cams that drive everything.

Continue reading “[Fran Blanche] Goes In-Depth With The Maillardet Automaton”