We All Need A Win Sometimes, So Make Them Yourself

We all need the occasional win when it comes to work or personal projects. Being able to feel that payoff of progress and satisfaction is deeply important, because if everything is always uphill, that’s a recipe for burnout. Avoiding that is important enough to explore how to set oneself up for a few easy wins.

Getting the occasional win helps us stay motivated, creative, and fulfilled. Meaningful work can deliver on this, but many of us rely on hobbies to make up any shortfall. Sometimes, that isn’t enough. Hobbies themselves can end up feeling like a chore, and when that happens, they cease to provide respite. The good news is that I believe it is possible to exploit the benefits of hobbies to deliver supplemental “wins” when they are needed most, and I’ll explain how.

I have found that successes do not have to be hard-won in order to be beneficial, but they do need to be relevant to one’s passions and interests. So, when naturally-occurring successes come too few and far between, and hobbies aren’t doing the trick, use knowledge of yourself to stack the deck for some easy wins. It can tip the scales towards feeling meaningful progress and fulfillment in the face of what could otherwise lead to burnout. Continue reading “We All Need A Win Sometimes, So Make Them Yourself”

A Phone That Old Shouldn’t Be Running Android

Cars and smartphones have something curious in common, just as most everyday saloon cars from different manufacturers have tended towards similarity, so have smartphones. Whether your smartphone the latest and greatest or only cost you $50 from a supermarket, it matters little to look at because both phones will be superficially near-identical black slabs.

It wasn’t always this way though, in decades past phones from different manufacturers each had their own flavours, and there was a variety in form factors to suit all tastes. There’s a ray of hope for fans of those days though, in the form of [befinitiv]’s 2000-era Sony flip phone. It runs Android. Yes, you read that right, there on the tiny screen is Android 9.

Of course whatever processor and electronics the phone came with are long gone, and instead the phone sports the internals of a modern Chinese watch-smartphone grafted in in place of the original. The whole electronics package fits in the screen opening, and though it required some wiring for the USB-C socket and a few other parts it looks for all the world from the outside as though it was meant to run Android. You can take a look in the video below the break.

He cheerfully admits that there’s still a way to go for example in getting the original keyboard working, but even with a tiny touchscreen it’s good enough to be a daily driver. It may be a little on the small side, but for those of us who miss our old phones maybe there’s hope in it for something new.

Meanwhile this isn’t the first re-use of an old phone we’ve seen recently.

Continue reading “A Phone That Old Shouldn’t Be Running Android”

Measuring Planck’s Constant With LEDs And A DMM

The remarkable thing about our universe is that it’s possible to explore at least some of its inner workings with very simple tools. Gravity is one example, to which [Galileo]’s inclined planes and balls bear witness. But that’s classical mechanics: surely the weirdness that is quantum mechanics requires far more sophisticated instrumentation to explore, right?

That’s true enough — if you consider a voltmeter and a Mark 1 eyeball to be sophisticated. That’s pretty much all you need for instruments to determine Planck’s constant to a decent degree of precision, the way that [poblocki1982]’s did. There’s a little more to it, of course; the method is based on measuring the voltage at which LEDs of various wavelengths start shining, so a simple circuit was built to select an LED from the somewhat grandly named “photon energy array” and provide a way to adjust and monitor the voltage and current.

By performing the experiment in a dark room with adapted eyes, or by using an opaque tube to block out stray light, it’s possible to slowly ramp the voltage up until the first glimmer of light is seen from each LED. Recording the voltage and the wavelength gives you the raw numbers to calculate the Planck constant h, as well as the Planck error Δh, with the help of a handy spreadsheet. [poblocki1982] managed to get within 11% of the published value — not too shabby at all.

Does this all still sound too complicated for you? Maybe a Watt balance made from Lego is more your speed.