Underwater Tanks Turn Energy Storage Upside-Down

Pumped hydro storage is one of the oldest grid storage technologies, and one of the most widely deployed, too. The concept is simple – use excess energy to pump a lot of water up high, then run it back through a turbine when you want to get the energy back later.

With the rise in renewable energy deployments around the world, there is much interest in finding ways to store energy from these often-intermittent sources. Traditional pumped hydro can help, but there is only so much suitable land to work with.

However, there could be a solution, and it lurks deep under the waves. Yes, we’re talking about underwater pumped hydro storage!

Continue reading “Underwater Tanks Turn Energy Storage Upside-Down”

Building Forged Carbon Fiber Wings For Radio Control Cars

When it comes to building decent aerodynamic devices, you want to focus on getting your geometry accurate, and making sure your parts are strong enough to deal with the force they’re generating. This build from [Engineering After Hours] delivers on those fronts, consisting of a high-downforce wing for a small RC car.

The video points out that, at best, even a decent RC car will have pretty crappy aerodynamic parts from the factory, with a lift-to-drag (L/D)ratio of 2-3:1 at best. This means that, while they may create some small amount of downforce, they’re also creating plenty of drag at the same time.

The dual-element wing designed here is much more efficient, hitting an L/D ratio in the vicinity of 17:1 – a huge improvement. Even a casual eye can note that the design looks a lot more like something you’d see on a full-size car, versus some of the whackier designs seen on toys.

The wing is built with a forged carbon fiber process using 3D-printed molds, to give the wing plenty of strength. Given that it’s built for an RC car that can do over 100 mph, making sure the wing is stiff enough to perform at speed is key.

[Engineering After Hours] does a great job of showing how to prepare the molds, fill them with carbon fiber, and pour the resin, and discusses plenty of useful tips on how to achieve good results with the forged carbon process.

The result is an incredibly impressive rear wing with aerodynamic performance to match its good looks. It may be more complicated than 3D printing, but the results of the work are that much tougher.

We’ve seen other aero experiments from [Engineering After Hours] before, too. Video after the break.

Continue reading “Building Forged Carbon Fiber Wings For Radio Control Cars”

A Portable Projecting Pi For Education

We cover a lot of cyberdeck projects here at Hackaday, custom portable computers often built around the Raspberry Pi. It’s not often that we cover a computer that perfectly achieves and exceeds what a cyberdeck is trying to do without being a cyberdeck in any way, but that’s what [Subir Bhaduri] has done. In addressing the need for Indian schoolchildren to catch up on two years of COVID-disrupted schooling he’s created the pπ, a Raspberry Pi, projector, and keyboard all-in-one computer in a neat sheet-metal case that looks as though it might be just another set of spanners or similar. At a stroke he’s effortlessly achieved the ultimate cyberdeck, because this machine is no sci-fi prop, instead it has a defined use which it fulfills admirably.

All the files to build your own can be found in a GitLab repository. The case is laser-cut sheet metal, and he’s put in a cost breakdown which comes out at a relatively healthy 17200 Indian rupees, or around 230 US dollars. We hope that it serves its purpose well and provides a rugged and reliable teaching aid for a generation from whom COVID has taken so much. You can see more in the video below the break.

Continue reading “A Portable Projecting Pi For Education”