Space Mirrors: Dreams Of Turning The Night Into Day Around The Clock

Recently, a company by former SpaceX employee Ben Nowack – called Reflect Orbital – announced that it is now ready to put gigantic mirrors in space to reflect sunshine at ground-based solar farms. This is an idea that’s been around for a hundred years already, both for purposes of defeating the night through reflecting sunshine onto the surface, as well as to reject the same sunshine and reduce the surface temperature. The central question here is perhaps what the effect would be of adding or subtracting (or both) of solar irradiation on such a large scale as suggested?

We know the effect of light pollution from e.g. cities and street lighting already, which suggests that light pollution is a strongly negative factor for the survival of many species. Meanwhile a reduction in sunshine is already a part of the seasons of Autumn and Winter. Undeniable is that the Sun’s rays are essential to life on Earth, while the day-night cycle (as well as the seasons) created by the Earth’s rotation form an integral part of everything from sleep- and hibernation cycles, to the reproduction of countless species of plants, insects, mammals and everyone’s favorite feathered theropods.

With these effects and the gigantic financial investments required in mind, is there any point to space-based mirrors?

Continue reading “Space Mirrors: Dreams Of Turning The Night Into Day Around The Clock”

Screenshot of eBay listings with Gigaset IoT devices being sold, now basically useless

A Giga-Sunset For Gigaset IoT Devices

In today’s “predictable things that happened before and definitely will happen again”, we have another company in the “smart device” business that has just shuttered their servers, leaving devices completely inert. This time, it’s Gigaset. The servers were shuttered on the 29th of March, and the official announcement (German, Google Translate) states that there’s no easy way out.

It appears that the devices were locked into Gigaset Cloud to perform their function, with no local-only option. This leaves all open source integrations in the dust, whatever documentation there was, is now taken down. As the announcement states, Gigaset Communications Gmbh has gotten acquired due to insolvency, and the buyer was not remotely interested in the Smart Home portion of the business. As the corporate traditions follow, we can’t expect open sourcing of the code or protocol specification or anything of the sort — the devices are bricks until someone takes care of them.

If you’re looking for smart devices on the cheap, you might want to add “Gigaset” to your monitored search term list — we’ll be waiting for your hack submissions as usual. After all, we’ve seen some success stories when it comes to abandoned smart home devices – like the recent Insteon story, where a group of device owners bought out and restarted the service after the company got abruptly shut down.

We thank [Louis] for sharing this with us!

A Long-Range Meshtastic Relay

In the past few years we’ve seen the rise of low-power mesh networking devices for everything from IoT devices, weather stations, and even off-grid communications networks. These radio modules are largely exempt from licensing requirements due to their low power and typically only operate within a very small area. But by borrowing some ideas from the licensed side of amateur radio, [Peter Fairlie] built this Meshtastic repeater which can greatly extend the range of his low-power system.

[Peter] is calling this a “long lines relay” after old AT&T microwave technology, but it is essentially two Heltec modules set up to operate as Meshtastic nodes, where one can operate as a receiver while the other re-transmits the received signal. Each is connected to a log-periodic antenna to greatly increase the range of the repeater along the direction of the antenna. These antennas are highly directional, but they allow [Peter] to connect to Meshtastic networks in the semi-distant city of Toronto which he otherwise wouldn’t be able to hear.

With the two modules connected to the antennas and enclosed in a weatherproof box, the system was mounted on a radio tower allowing a greatly increased range for these low-power devices. If you’re familiar with LoRa but not Meshtastic, it’s become somewhat popular lately for being a straightforward tool for setting up low-power networks for various tasks. [Jonathan Bennett] explored it in much more detail as an emergency communications mode after a tornado hit his home town.

Continue reading “A Long-Range Meshtastic Relay”