Smart Plugs Don’t Save You Energy, But Don’t Consume Much Either

Amazon Alexa, Google Home, and just about every electronic device manufacturer are jumping on the bandwagon of connected devices. They promise us the ability to turn on our toaster from another room, unlock our doors just by shouting at them from outside, and change the channel on our TV through perfectly enunciating a sentence instead of mashing the buttons on our remotes like chumps. And yet, despite all this new-fangled finger-less control, there is an unanswered question: does this technology save us energy in the long run?

For years we’ve been hearing about vampire power and all the devices in our home that sit in standby, waiting for their masters to turn them on, quietly burning power to listen for that signal to wake. Fortunately the One Watt Initiative and general awareness and design for energy savings has cut out a lot of this phantom load. So how does the smart home, which essentially adds a bunch of connected vampires to our base load, end up saving money in the long run? And is it better than other alternatives or just good habits? I put these questions to the test with today’s smart power strips and controllable outlets.

Continue reading “Smart Plugs Don’t Save You Energy, But Don’t Consume Much Either”

People with Dementia can DRESS Smarter

People with dementia have trouble with some of the things we take for granted, including dressing themselves. It can be a remarkably difficult task involving skills like balance, pattern recognition inside of other patterns, ordering, gross motor skill, and dexterity to name a few. Just because something is common, doesn’t mean it is easy. The good folks at NYU Rory Meyers College of Nursing, Arizona State University, and MGH Institute of Health Professions talked with a caregiver focus group to find a way for patients to regain their privacy and replace frustration with independence.

Although this is in the context of medical assistance, this represents one of the ways we can offload cognition or judgment to computers. The system works by detecting movement when someone approaches the dresser with five drawers. Vocal directions and green lights on the top drawer light up when it is time to open the drawer and don the clothing inside. Once the system detects the article is being worn appropriately, the next drawer’s light comes one. A camera seeks a matrix code on each piece of clothing, and if it times out, a caregiver is notified. There is no need for an internet connection, nor should one be given.

Currently, the system has a good track record with identifying the clothing, but it is not proficient at detecting when it is worn correctly, which could lead to frustrating false alarms. Matrix codes seemed like a logical choice since they could adhere to any article of clothing and get washed repeatedly but there has to be a more reliable way. Perhaps IR reflective threads could be sewn into clothing with varying stitch lengths, so the inside and outside patterns are inverted to detect when clothing is inside-out. Perhaps a combination of IR reflective and absorbing material could make large codes without being visible to the human eye. How would you make a machine-washable, machine-readable visual code?

Helping people with dementia is not easy but we are not afraid to start, like this music player. If matrix codes and barcodes get you moving, check out this hacked scrap-store barcode scanner.

Thank you, [Qes] for the tip.

Look Out Nest — Here Comes the WIoT-2

[Dave] is an avid hacker and no stranger to Hackaday. When he decided to give his IoT weather display an upgrade, he pulled out all the stops.

The WIoT-2 is less of a weather station and more of an info center for their house — conveniently located by their front door — for just about anything [Dave] or his partner need to know when entering or exiting their home. It displays indoor temperature and humidity, date, time, garbage collection schedule, currency exchange rates, whether the garage door is open or closed, the hot tub’s temperature, a check in for his kids, current weather data from a custom station [Dave] built outside his house, and the local forecast.

WIoT-2’s display is a Nextion TFT and the brains behind the operation is a NodeMCU 8266. He made extensive use of Blynk to handle monitoring of the various feeds, and will soon be integrating master control for all the networked outlets in the house into the system. He found setting up the hardware to be fairly clear-cut but notes that he cannot have the screen powered on when uploading sketches to the NodeMCU.  He circumvented the problem by adding a latching switch to the screen’s power line.

[Dave] curated a robust explanation of his build that includes tips, tricks, code — and a how-to to boot! If you’re not already starting your own build of this info suite, you may be tantalized by some of his other projects.

Continue reading “Look Out Nest — Here Comes the WIoT-2”

Hazardous Dollhouse Teaches Fire Safety

Fire safety is drilled into us from a young age. And for good reason, too, because fire hazards are everywhere in the average home. Even a small fire can turn devastatingly dangerous in a matter of minutes. But how do you get kids to really pay attention to scary (and often boring) adult concepts? You can teach a kid to stop, drop, and roll until you’re blue in the face and still might not drive home the importance of fire prevention. Subjects like this call for child-sized visual aids that ignite imaginations.

That’s exactly what firefighters in Poznań, Poland did in collaboration with mlabs, a local software company. They built a mobile, interactive fire safety education tool that simulates common household fire hazards in great detail (translated). This is easily the most tricked-out dollhouse we’ve ever seen. The many different hazard scenarios are controlled via touchscreen using a custom-built application. At the tap of a button, the house becomes a total death trap. The lamp-lit hazards glow realistically and with varied intensity, and there is actual smoke coming out of them that triggers smoke detectors. Cameras embedded throughout the house provide a first-person view of the terror on a nearby monitor.

Almost no room is safe for the figurine family that lives inside this intricately detailed 1:12 scale dwelling. Dad’s in the kitchen standing idly by while food scorches on the stove. Grandma’s sitting on her bed upstairs, her forgotten cigarette burning a hole in the duvet. Daughter is overloading the electrical outlets in her bedroom with all her gizmos. Smoldering coals have spilled out from the toppled stove in the utility room.

This isn’t the first smart dollhouse we’ve seen, but it’s probably the most intriguing. The fire safety dollhouse was on display this week at POL-EKO-SYSTEM, an annual environmental fair in Poznań. Nowhere near Poland? Check out the video after the break.

Continue reading “Hazardous Dollhouse Teaches Fire Safety”

A Magic Light Bulb For All Your Bright Ideas

[Uri Shaked]’s lamentation over the breaking of his smart bulb was brief as it was inspiring — now he had a perfectly valid excuse to hack it into a magic light bulb.

The first step was disassembling the bulb and converting it to run on a tiny, 130mAh battery. Inside the bulb’s base, the power supply board, Bluetooth and radio circuits, as well as the LED board didn’t leave much room, but he was able to fit in 3.3V and 12V step-up voltage regulators for the LiPo battery.

[Shaked]’s self-imposed bonus round was to also wedge a charging circuit — which he co-opted from a previous project — into the bulb instead of disassembling it every time it needed more juice. Re-soldering the parts together: easy.  Fitting everything inside a minuscule puzzle-box: hard. Kapton tape proved eminently helpful in preventing shorts in the confined space.

Continue reading “A Magic Light Bulb For All Your Bright Ideas”

Google Home Meets ESP8266

[Luc Volders] is building his own smart house with the help of Google Home and an ESP-8266. Inspired by the house computers from the TV show, Eureka [Luc] created an IoT ecosystem using a mix of off the shelf devices and open source software.

There are about a thousand ways to create a DIY smart home these days. All of them involve setting up a command receiver (like Amazon’s Echo or Google Home), some sort of cloud connection, and an end device controller. This can get complex for the beginner. [Luc’s] article is great because he walks is through each step tutorial style. He even keeps things simple by programming the ESP8266 using BASIC with ESP-BASIC.

[Luc] uses If This Then That (IFTT) as his cloud service. IFTT is the glue between Google’s cloud service and the ESP8266 connected to his home WiFi network. Speaking of which, [Luc] shows how to set up port forwarding on the router so all accesses to port 8085 go to the ESP8266. Not exactly strong security – but it’s better than opening the entire home network.

You don’t need a real Google home device for this hack. You can build your own with a Raspberry Pi. Once that is set up you can do everything from turning on lights to watering your lawn.

Continue reading “Google Home Meets ESP8266”

Sense All the Things with a Synthetic Sensor

What will it take to make your house smarter than you? Judging from the price of smart appliances we see in the home centers these days, it’ll take buckets of cash. But what if you could make your home smarter — or at least more observant — with a few cheap, general purpose “supersensors” that watch your every move?

Sounds creepy, right? That’s what [Gierad Laput] and his team at the Carnegie Mellon Human-Computer Interaction Institute thought when they designed their broadband “synthetic sensor,” and it’s why they purposely omitted a camera from their design. But just about every other sensor under the sun is on the tiny board: an IR array, visible light sensors, a magnetometer, temperature, humidity, and pressure sensors, a microphone, PIR, and even an EMI detector. Of course there’s also a WiFi module, but it appears that it’s only for connectivity and not used for sensing, although it clearly could be. All the raw data is synthesized into a total picture of the goings on in within the platform’s range using a combination of machine learning and user training.

The video after the break shows the sensor detecting typical household events from a central location. It’s a powerful idea and we look forward to seeing how it moves from prototype to product. And if the astute reader recognizes [Gierad]’s name, it might be from his past appearance on these pages for 3D-printed hair.

Continue reading “Sense All the Things with a Synthetic Sensor”