Another Chance To Revive Your Nabaztag

The early history of home internet appliances was replete with wonderful curios as a new industry sought to both find a function for itself and deliver something useful with whatever semiconductors were available nearly two decades ago. A favourite of ours is the Nabaztag, a French-designed information appliance in the form of a cute plastic rabbit whose ears would light up and move around as it delivered snippets of information.

The entity behind the Nabaztag folded and the servers went away years ago of course, but the original designer [Olivier Mével] never gave up on his creation. Back in 2019 he created an updated mainboard for the device packing a Raspberry Pi Zero W, which has been released in a series of crowdfunding campaigns. If you have a Nabaztag and haven’t yet upgraded, you can snag one now as the latest campaign has started.

We took a look at the Nabaztag back in 2020, at the time with out bricked original unit. Happily a year later we were able to snag one of the upgrades, so it’s now happily keeping us up to date with the time, weather, and other fun things. The upgrade motherboard is designed to slot into the same place as the original and mate with all its connectors, and even comes with that annoying triangle screwdriver. If you want to stand out against all the Alexa and Google Home owners, dig out your cute rabbit from the 2000s and give it this board!

Toy Gaming Controller Makes The Big Leagues

Some of the off-brand video game consoles and even accessories for the major brands can leave a lot to be desired. Whether it’s poor build quality or a general lack of support or updates, there are quite a few things on the market not worth anyone’s time or money. [Jonathan] was recently handed just such a peripheral, a toy game controller originally meant for a small child, but upon further inspection it turned into a surprisingly hackable platform, capable of plenty of IoT-type tasks.

The controller itself was easily disassembled, and the functional buttons within were wired to a Wemos D1 Mini instead of the originally-planned ESP32 because of some wiring irregularities and the fact that the Wemos D1 Mini having the required amount of I/O. It’s still small enough to be sealed back inside the controller as well, powered by the batteries that would have powered the original controller.

For the software, [Jonathan] is using MQTT to register button presses with everything easily accessible over Wi-Fi, also making it possible to update the software wirelessly. He was able to use it to do a few things as proof-of-concept, including playing a game in PyGame and controlling a Sonos speaker, but for now he’s using it to control an LED sculpture. With something this easily modified, though, it would be pretty straightforward to use it instead for a home automation remote control, especially since it is already set up to use MQTT.

Continue reading “Toy Gaming Controller Makes The Big Leagues”

Your Guide To Using Amazon’s Sidewalk Network For The Internet Of Things

As the Internet of Things became a mainstream reality, it raised an interesting point about connectivity. We quickly learned it wasn’t ideal to have every light bulb, toaster, and kettle buzzing away on our main WiFi networks. Nor was it practical to sign up for a cellular data plan for every tracker tag or remote sensor we wanted to use.

To solve this issue, various tech companies have developed their own low-power mesh networking solutions. Amazon’s Sidewalk network is one of the widest spread in the US. Now, it’s opening it up for wider use beyond its own products, and you can get in on the action.

Continue reading “Your Guide To Using Amazon’s Sidewalk Network For The Internet Of Things”

Supercon 2022: Irak Mayer Builds Self-Sustainable Outdoor IoT Devices

[Irak Mayer] has been exploring IoT applications for use with remote monitoring of irrigation control systems. As you would expect, the biggest challenges for moving data from the middle of a field to the home or office are with connectivity and power. Obviously, the further away from urbanization you get, the sparser both these aspects become, and the greater the challenge.

[Irak] solves his connectivity problem by assuming there is some WiFi network within range, building a system around the Blues Wireless WiFi note card. Substituting their cellular card would be an option for applications out of WiFi range, but presumably without changing too much on the system and software side of things. Leveraging the Adafruit FeatherWing INA219, which is a bidirectional current sensor with an I2C interface, for both the power generation and system consumption measurements. For control, [Irak] is using an Adafruit ESP32 board, but says little more about the hardware. On the software side, [Irak] is using the Blues Wireless NoteHub for the initial connection, which then routes the collected data onto the Adafruit IoT platform for collation purposes. The final part of the hardware is a LiPo battery which is on standby to soak up any excess power available from the energy harvesting. This is monitored by an LC709203f battery fuel gauge.

Continue reading “Supercon 2022: Irak Mayer Builds Self-Sustainable Outdoor IoT Devices”

Smart Ovens Are Doing Dumb Checks For Internet Connectivity

If you’ve ever worked in IT support, you’ll be familiar with users calling in to check if the Internet is up every few hours or so. Often a quick refresh of the browser is enough to see if a machine is actually online. Alternatively, a simple ping or browsing to a known-working website will tell you what you need to know. The one I use is koi.com, incidentally.

When it comes to engineers coding firmware for smart devices, you would assume they have more straightforward and rigorous ways of determining connectivity. In the case of certain smart ovens, it turns out they’re making the same dumb checks as everyone else.

Continue reading “Smart Ovens Are Doing Dumb Checks For Internet Connectivity”

Building A Local Network With LoRaWAN

At its core, the Internet is really just a bunch of computers networked together. There’s no reason that there can’t be other separate networks of computers, or that we all have to tie every computer we have to The One Internet To Rule Them All. In fact, for a lot of embedded systems, it doesn’t make much sense to give them a full network stack and Cat6e Ethernet just to report a few details about themselves. Enter LoRaWAN, a wireless LAN that uses extremely low power for Internet-of-Things devices, and an implementation of one of these networks in an urban environment.

The core of the build is the LoRaWAN gateway which sits at the top of a tall building to maximize the wireless range of all of the other devices. It’s running ChirpStack on the software side and uses a Kerlink Wigrid station to broadcast. The reported range is a little over 9 km with this setup. Other gateways can also be added, and the individual LoRa modules can report to any available gateway. From there, the gateways all communicate back to the central server and the information can be sent out to the wider network, Internet or otherwise.

The project’s creator [mihai.cuciuc] notes that this sort of solution might not be best for everyone. There are other wide area networks available, but using LoRaWAN like this would be likely to scale better as more and more devices are added to the network. For some other ways that LoRa can be used to great effect, take a look at this project which builds an off-grid communications network with it.

UV Monitoring Budgie Keeps An Eye On Exposure Levels

UV rays are great at helping us generate vitamin D, but they can also be harmful, causing sunburn and even melanoma. To help kids keep track of the UV index in his local area, [Jude Pullen] created the UV Budgie.

The build is based around an Arduino Nano 33 IoT board, which queries the Met Office’s API to determine the UV level in the area. The relevant data is then displayed on a small e-ink display, with cute little sun characters telling you about the prevailing conditions. It also announces the current risk level with recorded voice samples, advising on whether precautions should be taken, such as using sunscreen or sheltering inside for the worst days. Plus, there’s a bird that flaps its wings to announce an update, actuated by a small servo in the base.

It’s a fun build that should help [Jude] and his family remain sun safe in the summer. [Jude] notes the build could also be reprogrammed to share other warnings, too. APIs to query local air quality or radiation levels are just some of the ideas that come to mind. Video after the break.

Continue reading “UV Monitoring Budgie Keeps An Eye On Exposure Levels”