A client uses an Augmented Alternative Communication board that speaks.

Tactile Communication Board Speaks The Truth

Sometimes, simple things can make a world of difference. Take for example a non-verbal person who can’t necessarily control a touch screen in order to tell someone else what they need or want or think.

The switches of the AAC board, plus the smaller version. This is where Augmentative and Alternative Communication (AAC) devices come in. Recently tasked with building such a device, [Thornhill!] came up with a great design that houses 160 different phrases in a fairly small package and runs on CircuitPython.

Basically, the client presses the appropriate snap-dome button button and the corresponding phrase is spoken through the speaker. The 10×16 grid of buttons is covered with a membrane that both feels nice and gives a bit of protection from spills.

The buttons can achieve high actuation forces and have a crisp tactile response, which means they’re probably gonna go a long way to keep the user from getting frustrated.

This handy AAC board is built on the Adafruit RP2040 Prop-Maker Feather and two keypad matrices. If this weren’t useful enough as it is, [Thornhill!] also built an even smaller version with 16 buttons for the client to wear around their neck.

Did you know? AAC boards aren’t just for humans.

A keyboard built into a commercial foot rest.

Floorboard Is A Keyboard For Your Feet

Whether you have full use of your hands or not, a foot-operated keyboard is a great addition to any setup. Of course, it has to be a lot more robust than your average finger-operated keyboard, so building a keyboard into an existing footstool is a great idea.

When [Wingletang]’s regular plastic footrest finally gave up the ghost and split in twain, they ordered a stronger replacement with a little rear compartment meant to hold the foot switches used by those typing from dictation. Settling upon modifiers like Ctrl, Alt, and Shift, they went about designing a keyboard based on the ATmega32U4, which does HID communication natively.

For the switches, [Wingletang] used the stomp switches typically found in guitar pedals, along with toppers to make them more comfortable and increase the surface area. Rather than drilling through the top of the compartment to accommodate the switches, [Wingletang] decided to 3D print a new one so they could include circuit board mounting pillars and a bit of wire management. Honestly, it looks great with the black side rails.

If you want to build something a little different, try using one of those folding stools.

Boss Byproducts: The Terrible Beauty Of Trinitite

While some byproducts recall an idyllic piece of Americana, others remind us that the past is not always so bright and cheerful. Trinitite, created unintentionally during the development of the first atomic bomb, is arguably one of these byproducts.

A see-through vial pendant with several small samples of Trinitite.
A Trinitite pendant. Image via Galactic Stone

Whereas Fordite kept growing back for decades, all Trinitite comes from a single event — the Trinity nuclear bomb test near Alamogordo, New Mexico on July 16, 1945. Also called ‘atomsite’ and ‘Alamogordo glass’, ‘Trinitite’ is the name that stuck.

There wasn’t much interest in the man-made mineral initially, but people began to take notice (and souvenirs) after the war ended. And yes, they made jewelry out of it.

Although there is still Trinitite at the site today, most of it was bulldozed over by the US Atomic Energy Commission in 1953, who weren’t too keen on the public sniffing around.

There was also a law passed that made it illegal to collect samples from the area, although it is still legal to trade Trinitite that was already on the market. As you might expect, Trinitite is rare, but it’s still out there today, and can even be bought from reputable sources such as United Nuclear. Continue reading “Boss Byproducts: The Terrible Beauty Of Trinitite”

A small handheld word game called Batch Craze, where one player tries to get another to guess the word on the screen.

2024 Tiny Games Contest: Batch Craze Is Portable Charades, Kind Of

So there’s this commercial electronic game out there called Catch Phrase, which, as the game’s own catch phrase explains, is the game that’s played one word at a time. See, a word comes up on the screen, and you have to get the other person or team to guess what it is using gestures and such before the timer goes off. There are a bunch of rules, like you can’t say a word that rhymes, give the first letter, or the number of syllables.

Well, [ahixson1230] and company got their hands on the After Dark NSFW version but found it lacking in the edginess department. So naturally, [ahixson1230] was inspired to build a better one, with a touch screen in lieu of buttons, and a way for players to suggest words to be added to the list. In this version, a player presses anywhere on the screen to start the game, and a random word or phrase comes up. They act it out, get the other person to guess, and then pass the unit over to continue the fun.

Batch Craze is based on the Cheap Yellow Display, aka the ESP32-2432S028R, and [ahixson1230] highly recommends [witnessmenow]’s excellent resource on the subject. As of this writing, [ahixson1230] is still trying to get the speaker to work, and welcomes any help. Can you assist?

There’s still time to enter the 2024 Tiny Games Contest! You have until Tuesday, September 10th, so head on over to Hackaday.IO and get started!

The Morse Quest game in semi-darkness to show off the dit-dahing light.

2024 Tiny Games Contest: Morse Quest Goes Where You Do

Do you know Morse code already? Or are you maybe trying to learn so you can be an old school ham? Either way, you could have a lot of fun with [felix]’s great little entry into the 2024 Tiny Games Contest — Morse Quest.

This minimalist text-based adventure game is played entirely in Morse code. That is, the story line, all the clues, and the challenges along the way are presented by a blinking LED. In turn, commands like LOOK, TAKE, and INVENTORY are entered with the slim key on the lower right side. A wee potentiometer allows the player to adjust the blink rate of the LED, so it’s fun for all experience levels. Of course, one could always keep a Morse chart handy.

The brains of this operation is an Arduino Nano, and there’s really not much more to the BOM than that. It runs on a 9 V, so theoretically it could be taken anywhere you want to escape reality for a while. Be sure to check out the demo video after the break.

Continue reading “2024 Tiny Games Contest: Morse Quest Goes Where You Do”

An adorable mini rack for NUCs, plus a 5-port switch.

A Mini NUC Rack For Your Desktop

We (well, some of us) are complete suckers for things that are both much smaller and much larger than life. And if that thing actually does what its supposed to? Squee! So naturally, we rushed to bring you news of this mini NUC rack designed by [Jeremy Weatherford].

Inspiration comes from a lot of places, often times from stuff that lives on your desk. [Jeremy] had a pile of NUCs and thought they resembled a mini rack already, so why not build them one to live in? It was the perfect excuse to learn CAD, so off [Jeremy] went. Although this is a mini rack, the parts were too big to print. Another opportunity presented itself, and [Jeremy] tried out an online service to get the acrylic cut.

Assembly may have been fiddly with super glue all over the nice black acrylic, but [Jeremy] learned an important tip: excess glue can be removed with vegetable oil. Once it was built, he decided to make it into a control system lab and even found a perfect little five-port switch to top it off. The logo plate, of course, is the icing on this cake.

If you prefer your tower of mini-computers to be extruded, we covered a clever design from [Jay Doscher] back in May.

Two tools for placing magnets with ease, one for each polarity.

An Attractive Magnet Insertion Tool

Magnets are pretty nice little tools. [EmGi] has used them in many a cool 3D printed build with great success. But getting them where you want can be really tricky. More often than not, you end up with glue all over your fingers, or the magnets fly out of place, or they stick together when you don’t want them to.

Depositing an array of 64 magnets into a 3D print to stress test the magnet-depositing tool.Well, [EmGi] created a mighty fine magnet insertion tool that you can print for yourself. It’s finger-operated and uses a single embedded magnet to place magnets wherever they’re needed.

This thing went through several designs before [EmGi] ever printed it out. Originally, there were two magnets, but there was an issue where if the tool wasn’t lifted off perfectly, it would send the magnet flying.

But now it works great, and [EmGi] even deposited an array of 64 magnets without using glue to test it out before printing a second one to handle the other polarity. Check out the build/demo video after the break.

While you’re printing and placing magnets, why not make yourself a couple of magnetic switches? You can even make ’em for keyboards.

Continue reading “An Attractive Magnet Insertion Tool”