Control Anything With A Universal Wireless Remote

If you aren’t already living on the spacecraft Discovery One, you may not have HAL listening to your every voice command. If that’s the case for you, as it is for us, you may have to resort to mashing buttons on little black monoliths like a primitive monkey. [Barnr]’s universal remote project, and some black PLA filament, will get you there in no time.

2001_obeliskThe remote is based on a nRF24 radios with a PIC to read the button presses. A Raspberry Pi and another nRF24 are listening on the other end. The code that runs either side of the connection is so minimal that both sides fit in the project description. It gets the job done, and it’s easily hackable. And with that, [barnr] can control anything that he can connect up to the Pi without getting up from his campfire.

While [barnr] is shy about his 3D design skills, we think that the box is fantastic. It’s got 3D-printed keycaps for the tactile switches that sit inside, and it’s an easily printed case. Maybe it’s a little blocky and, frankly monolithic, but it gets the job done. Aesthetics are for version 2.0.

When you build something yourself, and it’s not a HAL 9000, you pretty much need a way to control it. It’s no wonder we’ve seen so many projects on Hackaday. If your 2.4 GHz spectrum is too crowded to run a nRF24 remote, you might consider infrared: tiny, tiny, infrared. Or if you want to see the craziest remote that we’ve ever seen, check out this DTMF-over-cellphone build. But if you just want something sweet and minimal that gets the job done, [barnr]’s build is for you.

Thanks [Mikejand] for the tip!

The Most Flexible Synthesizer Is DIY, Raspberry Pi

[Ivan Franco] sent us this great synthesizer project that he’s working on. Or maybe it’s more like a synthesizer meta-project: a synthesizer construction set. You see, what Pryth has is a Raspberry Pi inside that’s running a custom distribution that includes SuperCollider to generate the sound, OSC for the communication layer, and a Teensy with up to 80 (!) multiplexed analog inputs that you’ll connect up to whatever hardware you desire.

Continue reading “The Most Flexible Synthesizer Is DIY, Raspberry Pi”

Mintomat: An Overcomplicated Gumball Machine

How do you get teenagers interested in science, technology, and engineering? [Erich]’s team at the Lucerne University of Applied Sciences makes them operate three robots to get a gumball. The entire demonstration was whipped together in a few days, and has been field-repaired at least once; a green-wire fix was a little heavy on the solder and would short out to a neighboring trace when mechanical force was applied.

Continue reading “Mintomat: An Overcomplicated Gumball Machine”

Floating Walking Robot

It’s no secret that we love bizarre robot locomotion, so we are naturally suckers for BALLU (YouTube link, also embedded below) the Bouyancy-Assisted Lightweight Legged Unit. The project started with a simple observation — walking robots are constrained by having to hold themselves up — and removing that constraint make success much easier. Instead of walking, BALLU almost floats and uses what little net weight it does have to push against the ground.

Continue reading “Floating Walking Robot”

Five-Watt SDR Transceiver For Hams

The availability of cheap SDR hardware created a flourishing ecosystem for SDR software, but a lot of the hardware driving the revolution was still “cheap”. In the last few years, we’ve seen quality gear replacing the TV dongles in many setups, and down-converters designed for them to allow them to work on the ham bands.

But something that’s purpose-built might be a better option if ham radio, particularly the shortwave portion thereof, is your goal. First off, you might want to transmit, which none of the TV dongles allow. Then, you might want a bit of power. Finally, if you’re serious about short-wave, you care more about the audio quality than you do immense bandwidth, so you’re going to want some good filters on the receiving end to help you pull the signal out of all the noise.

rs-hfiq_block_diagram_featuredThe RS-HFIQ 5 W SDR transceiver might be for you. It’s up on Kickstarter right now, and it’s worth looking at if you want a fully open source (schematics, firmware, and software) shortwave SDR rig. It’s also compatible with various open frontends.

The single-board radio isn’t really a full SDR in our mind — it demodulates the radio signal and sends a 96 kHz IQ signal across to your computer’s soundcard where it gets sampled and fully decoded. The advantage of this is that purpose-built audio rate DACs have comparatively high resolution for the money, but the disadvantage is that you’re limited to 96 kHz of spectrum into the computer. That’s great for voice and code transmissions, but won’t cut it for high-bandwidth data or frequency hopping applications. But that’s a reasonable design tradeoff for a shortwave.

Still, an SDR like this is a far cry from how simple a shortwave radio can be. But if you’re looking to build up your own SDR-based shortwave setup, and you’d like to hack on the controls more than on the radio itself, this looks like a good start.

Hackenings: Technologica Incognita Parties After SHA2017 Plans

Welcome to [Hackenings], our weekly calendar of what’s going on in the global hackerspace community this week. As ever, if you have any upcoming events that you’d like us to cover, email us at tips@hackaday.com and put [Hackenings] in the subject so that we don’t miss it.

TechInc Turns Five!

Technologia Incognita is a five-year-old hackerspace in Amsterdam, and they’re having a party on the 26th. How do you celebrate five years of social hacking, creative cooking, and general geekery? With more of the same, plus drinks. If you’ve never been to TechInc, you’ll find directions here.

The TechInc crew is not all play and no work, however. Their party coincides with the end of the second organizational planning meeting for SHA2017, a summer outdoor camping hacker camp/festival/conference that’s going to take place next summer, not coincidentally just outside of Amsterdam.

The European hacker scene is a little bit like international soccer / football — every four years there’s a World Cup, and in the off years there are equally important regional tournaments. The German Chaos Communication Camp and the Dutch series-of-camps-that-changes-name-every-time are like this, but for us. If you missed the CCC last summer, or ToorCamp this summer, then start making plans for SHA2017 next summer.

Don’t Forget Dublin

We mentioned this last week, but TOG Hackerspace in Dublin is having a 36 hour hackathon starting today (the 19th). This looks like a great time to get together with other nerds and make something crazy in a shortish amount of time. If you’re anywhere nearby, you should head on over. After all, it’s for science!

New Record For Balloon: Duration Aloft

High-altitude balloon flights have become somewhat of a known quantity these days. Although it’s still a fun project that’ll bring your hackerspace together on a complex challenge, after the first balloon or two, everyone starts to wonder”what next?”. Higher? Faster? Further? Cheaper? More science? There are a variety of different challenges out there.

A group of Stanford students just bagged a new record, longest time in flight, with their SSI-41 mission. In addition to flying from coast to coast, on a track that went waaaay up into Canadian airspace, they logged 79 hours of flight time.

altvstimeThe secret? Val-Bal. A “valve ballast” gas venting valve and ballast dispenser system that kept the balloon from going too high (and popping) or dropping back down to earth. The balance seems to have worked nearly perfectly — check the altitude profile graph. We’d love to see more details about this system. If anyone out there on the team does a writeup, let us know?

There are as many interesting ways to get into high-altitude ballooning as there are hackers. We love the extreme economy of the Pico Space Balloon project, which has gone around the world (twice!) on a solar-powered party balloon. And we’ll give both the best-name and ridiculous-concept awards to the Tetroon. But for now, most time aloft goes to the Stanford team. Congrats!

[via the Bangor Daily News, if you can believe that]