[Ken Shirriff] Becomes a Core Memory Repairman (Again)

Lately, [Ken Shirriff] has been on some of the most incredible hardware adventures. In his most recent undertaking we find [Ken] elbow-deep in the core memory of a 50-year-old machine, the IBM 1401. The computer wasn’t shut down before mains power was cut, and it has refused to boot ever since. The culprit is in the core memory support circuitry, and thanks to [Ken’s] wonderful storytelling we can travel along with him to repair an IBM 1401.

From a hardware standpoint core memory makes us giddy. It’s a grid of wires with ferrite toroids at every intersection. Bits can be set or cleared based on how electricity is applied to the intersecting wires. [Al Williams] walked through some of the core memory history last year and we enjoyed hearing [Pamela Liou] recount the story of how textile workers consulted on the fabrication of core memory for the Apollo missions during her OHWS Talk in October. But giddiness aside, core memory has pretty much gone the way of the dodo having been displaced by technologies that take up exponentially less space.

Bad inductor (green housing has been dissolved away)

We chuckle at [Ken’s] mention of the core memory capacity for the IBM 1401. It has 4000 characters of memory built-in (with another 12,000 in an expansion box) and he goes on to detail that these are 6-bit characters on a machine that operates in decimal and not binary (hence 4k instead of the base-2 friendly 4096).

You may remember his work a few years back to repair core memory on the same model. The Museum has two 1401’s, which turned out to be a huge help in trouble-shooting this. After tracing out the control lines, the repair team began swapping cards between the working and non-working machines. They were able to bring it back online — establishing one of the green inductors was bad — only to be struck with a second fault in the power supply.

Get this, [Ken] comments that “the whole computer is pre-silicon”. When working through the PSU, some suspect transistors were replaced with germanium power transistors. Those may have been a red-herring, as a penciled-in fuse on the original schematics turned out to be the linchpin of the PSU repair. Buried deep in the assembly, replacing the designed-to-fail part let the ancient beast awake once more.

Machines of this quality were heavily documented, and the schematics make this type of trouble-shooting a lot more manageable. But it’s still as much an art as it is skill. Make sure to give [Ken’s] article a read, and look around at the other repair jobs he’s documented — keeping these machines in service is becoming wizard-level work and we love being able to follow along.

Retrotechtacular: 1950s Televisions Were Beasts

Television has been around for a long time, but what we point to and call a TV these days is a completely different object from what consumers first fell in love with. This video of RCA factory tours from the 1950s drives home how foreign the old designs are to modern eyes.

Right from the start the apparent chaos of the circuitry is mindboggling, with some components on circuit boards but many being wired point-to-point. The narrator even makes comments on the “new technique for making electrical connections” that uses a wire wrapping gun. The claim is that this is cleaner, faster, and neater than soldering. ([Bil Herd] might agree.) Not all of the methods are lost in today’s manufacturing though. The hand-stuffing and wave soldering of PCBs is still used on lower-cost goods, and frequently with power supplies (at least the ones where space isn’t at a premium).

It’s no surprise when talking about 60+ year-old-designs that these were tube televisions. But this goes beyond the Cathode Ray Tube (CRT) that generates the picture. They are using vacuum tubes, and a good portion of the video delves into the manufacture and testing of them. You’ll get a glimpse of this at 3:20, but what you really want to see is the automated testing machine at 4:30. Each tube travels along a specialized conveyor where the testing goes so far as to give a  few automated whacks from corks on the ends of actuators. As the tube gauntlet progresses, we see the “aging” process (around 6:00) when each tube is run at 3-4 times the rated filament voltages. Wild!

There’s a segment detailing the manufacture of the CRT tubes as well, although these color tubes don’t seem to be for the model of TV being followed during the rest of the films. At about 7:07 they call them “Color Kinescopes”, an early name for RCA’s CRT technology.

During the factory tours we get the overwhelming feeling that this manufacturing is more related to automotive than modern electronic. These were the days when televisions (and radios) were more like pieces of furniture, and seeing the hulking chassis transported by hanging conveyors is just one part of it. The enclosure plant is churning out legions of identical wooden consoles. This begins at 11:55 and the automation shown is very similar to what we’d expect to see today. It seems woodworking efficiency was already a solved problem in the ’50s.

Continue reading “Retrotechtacular: 1950s Televisions Were Beasts”

Take the Coin Cell Challenge This Weekend!

The year is drawing to a close, and we have a weekend project for you to while away the remaining hours. Take the Coin Cell Challenge!

The point of the challenge is to do something interesting with a coin cell. That’s it! It’s a challenge that can be as simple or as involved as you want. Low power is where it’s at these days, so if you’ve never used the hardware sleep modes in your favorite microcontroller, that would make an excellent challenge entry. Show us what you’re able to do with short wake periods, and talk about when and why that wake happens. Or go a completely different route and build your own cell!

[Ben Krasnow] makes the most of a tiny power source
The top twenty entries will each receive a $100 Tindie credit so they can score some excellent gear. Three top winners in some special areas who will each be awarded a $500 cash prize. We’re looking for something interesting that demonstrates longest life (Lifetime Award), something that burns through that coin cell as if it’s going out of style (Supernova Award), and something that fills us with disbelief (Heavy Lifting Award) because it shouldn’t be possible with “just a coin cell”.

One of our biggest inspirations for this contest was [Ben Krasnow] who managed to squeeze enough juice out of a miniscule coin cell to power his Flashing Light Prize entry, only because he reduced internal resistance by heating the cell with an air gun (here’s the Hackaday coverage of that project). And [Elliot Williams] wrote a great guide on what kind of juice you can expect to get out of a cell. Take these to heart and do something interesting this weekend. Enter now!

Magic Leap Finally Announced; Remains Mysterious

Yesterday Magic Leap announced that it will ship developer edition hardware in 2018. The company is best known for raising a lot of money. That’s only partially a joke, since the teased hardware has remained very mysterious and never been revealed, yet they have managed to raise nearly $2 billion through four rounds of funding (three of them raising more than $500 million each).

The announcement launched Magic Leap One — subtitled the Creator Edition — with a mailing list sign up for “designers, developers and creatives”. The gist is that the first round of hardware will be offered for sale to people who will write applications and create uses for the Magic Leap One.

We’ve gathered some info about the hardware, but we’ll certainly begin the guessing game on the specifics below. The one mystery that has been solved is how this technology is delivered: as a pair of goggles attaching to a dedicated processing unit. How does it stack up to current offerings?

Continue reading “Magic Leap Finally Announced; Remains Mysterious”

Kristin Paget is Hacking Carrier Grade LTE eNodeB

Every once in a while you get lucky and a piece of cool gear lands on your bench to tear down and explore. On that measuring stick, Kristin Paget hit the jackpot when she acquired a fascinating piece of current generation cellphone infrastructure. She’s currently researching a carrier-grade LTE eNodeB and walked through some of the findings, along with security findings of two IoT products, during her talk on the Laws of IoT Security at the 2017 Hackaday Superconference.

Evolved Node B (eNodeB) is the meat and potatoes of the LTE cellular network. It connects the antenna to backhaul — this is not something you’d expect to see on the open market but Kristin managed to pick one up from a vendor at DEF CON. Hearing her walk through the process of testing the hardware is a real treat in her talk and we’ll get to that in just a minute. But first, check out our video interview with Kristin the morning after her talk. We get into the progress of her eNodeB research, and touch on the state of IoT security with advice for hardware developers moving forward.

Continue reading “Kristin Paget is Hacking Carrier Grade LTE eNodeB”

Christine Sunu Proves the Effect of Being Alive on Hardware Design

Modeling machines off of biological patterns is the dry definition of biomimicry. For most people, this means the structure of robots and how they move, but Christine Sunu makes the argument that we should be thinking a lot more about how biomimicry has the power to make us feel something. Her talk at the 2017 Hackaday Superconference looks at what makes robots more than cold metal automatons. There is great power in designing to complement natural emotional reactions in humans — to make machines that feel alive.

We live in a world that is being filled with robots and increasingly these are breaking out of the confines of industrial automation to take a place side by side with humans. The key to making this work is to make robots that are recognizable as machines, yet intuitively accepted as being lifelike. It’s the buy-in that these robots are more than appliances, and Christine has boiled down the keys to unlocking these emotional reactions.

Continue reading “Christine Sunu Proves the Effect of Being Alive on Hardware Design”

HJWYDK: the Journal our Community Has Been Awaiting

We’re excited to announce the Hackaday Journal of What You Don’t Know. This will be a peer-reviewed journal of white papers that goes well beyond “look what I did” and will provide full design, data, and everything else needed to reproduce the most interesting things the engineering world has to offer. It’s a complete description of your knowledge offered up for the benefit of all.

Topics will include original and creative research, engineering, and entertainment in the areas of interest to the Hackaday community. These papers should embody original insight, experience, or discovery in any sufficiently challenging domain knowledge. This will be the manual for the things you need to know, but probably don’t. HJWYDK makes that knowledge freely available using the Open Access model for publications. It will be a journal without paywalls or frustration. It’s the journal you will reach for whenever you need to do something that feels impossible.

Useful information doesn’t just happen. It’s won through struggle and leads to unique knowledge. Have your accomplishments recognized at a higher level, and make sure they live on and are freely available.

All papers accepted by the editorial and review process will be immediately published online. They will also be printed in the annual Proceedings of the Hackaday Superconference, with the best submissions invited to present in person at the conference. Submit your papers now!

We are currently seeking Associate Editors and Peer Reviewers. Editors should send your background info to journal@hackaday.com. Reviewers should join the team on the HJWYDK project page and mention your areas of expertise in the join request.