N64 Controller Input Using An ATtiny85

[Larsim] worked out the timing necessary to read button and joystick data from an N64 controller using an ATtiny85 microcontroller. The project was spawned when he found this pair of controllers in the dumpster. We often intercept great stuff bound for the landfill, especially on Hippie Christmas when all the student switch apartments at the same time.

Instead of cracking the controllers open and patching directly to the buttons, [Larsim] looked up the pinout of the connector and patched into the serial data wire. In true hacker fashion, he used two 5V linear regulators and a diode in series to step his voltage source down to close to 3.6V, as he didn’t have a variable regulator on hand. It does sound like this causes noise which can result if false readings, but that can be fixed with the next parts order.

The controller waits for a polling signal before echoing back a response in which button data is embedded. This process is extremely quick, and without a crystal on hand, the chip needs to be configured to use its internal PLL to ramp the R/C oscillator up to 16Mhz. With the chip now running fast enough, an external interrupt reads the serial response from the controller, and the code reacts based on that input.

It seems the biggest reason these N64 controllers hit the trash can is because the analog joystick wears out. If you’ve got mad skills you can replace it with a different type.

Electronic Die Rolls Up To 100

If you’re gaming on the road, or just don’t have a die with the right number of sides on hand, an electronic polyhedral die will be quite handy. [Marcus] built this using a printed circuit board of his own design, and we think an electronically simple project like this is a great way to get your feet wet with PCB fab house techniques. He suggests Seeed Studios’ service, or the DorkBotPDX group PCB order. But this would not be a hard project to build on perfboard as well.

The concept is simple. A two-digit 7-segment display shows the value of the top face of your die. when it’s time to roll, just pick up the box and tip it over. A tilt switch senses this action and rolls the die by displaying the next pseudo-random number. The single button, seen here with a pyramid die glued to it, lets you select between die with different number of sides; from 2 (like a coin flip) all the way up to 100.

We like [Marcus’] projects. He’s the same guy that built a scoring system in a game storage box.

Ultimaker Quality FAQ Is Like Porn For 3D Printers

Do you think it’s not really possible to get amazing resolution from extruder-based 3D printers? You’re wrong, and this post about the attainable quality of prints on the Ultimaker proves it. The Yoda bust seen above was printed with a layer thickness of 0.02mm. This is a hack in itself because this process actually used two different layer thicknesses. The interior of the print, which you can’t see, but serves as a support mechanism for the object was printed at 0.04mm, with just the visible perimeter printed in the smaller thickness. That trickery is just fine with us if this is the result.

[Dave Durrant] discusses the press the Ultimaker has received, which mostly focused on the relatively fast printing process this hardware uses. But he didn’t think the story of the quality you can get with the device was being told. So he put out a call on the mailing list to send in pictures of high-quality 3D prints and he wasn’t disappointed by the response. You’ll see images of busts, bodies, gears, animals, and art pieces. There’s information about how they were printed, but even those not interested in the particulars will appreciate the macro photography that gives you an up-close look at how far we’ve come with these table-top rapid prototyping machines.

[Thanks Taylor]

Build A Binary Wall Clock For Just A Few Bucks

The weekend is almost here and if you’re looking for an afternoon project consider building your own binary wall clock. [Emihackr97] built the one you see above using parts on hand, but even if you put in an order for everything, it won’t cost you much.

He used a cardboard box as the housing for the clock, marking a grid for the LEDs on the face and drilling holes to house them. Two columns for hours and another two for minutes let the clock display 24-hour time with alternate firmware for 12 hour time. Since there are two buttons – one to set hours, the other to set minutes – a little coding would make it possible to select between the two either by clicking both buttons at once, or holding down one button.

[Emihackr97] is driving the display with an ATmega48, which is a pin-compatible replacement for the ATmega168/328. Those chips are the type most commonly found on Arduino boards an indeed this project is running the Arduino bootloader, but uses an ISP programmer and breadboarded circuit to keep the costs low. There are plenty of pins to drive the 13 LEDs directly, making the soldering quick and painless. Check out a demo clip after the break.

If you’re successful at this build and get the itch for something with more style, there’s a ton of ways to spice up the look of a binary clock.

Continue reading “Build A Binary Wall Clock For Just A Few Bucks”

Non-invasive AC Power Adapter For Exercise Equipment

We often look at battery-operated hardware and shake our heads at the wastefulness of throwing away disposable batteries. There are some devices that minimize the waste, like those TV remotes that seem to never need new cells. But the C cells that [Quinn Dunki] kept replacing in her elliptical trainer were only lasting about three months at a time. The manufacturer hadn’t cared enough to build a power jack into the machine, so she built her own AC adapter without modifying the stock hardware.

The first thing she did was to patch in a couple of wires between two of the batteries. This let her measure the current consumption, which topped out at around 200mA. This is good news because that’s easily sourced with a cheap linear regulator. Out of the junk box came a 12V/1A wall wart transformer, which just leaves the need for a fuse and some capacitors to finish out a voltage regulator circuit.

Since [Quinn] didn’t want to permanently alter the exerciser, she came up with a way that it could take the same physical space as the batteries. Two long stand-offs are used as prongs to interface the spring terminals in the battery compartment. They attach to a piece of protoboard which hosts the rest of the circuitry. Now she just needs to remember to unplug this from the wall after each session and she’ll be in business.

Hackers Age 14-18 Can Compete To Put Their Project Into Space

If you’re between the ages of 14 and 18, or have a child who is, here’s a chance to put a project into space. NASA is partnering with YouTube, Lenovo, and a few other entities for a contest that challenges participants to dream up low-gravity experiments. You can enter as an individual or in teams of up to three people, and may put forth up to three experiment ideas for judging. Getting in on the first round is as easy as recording and uploading a video. You’ll need to state a scientific question or principle you want to test, a hypothesis of what can be learned, and a method for testing it.

As with most of the projects we encounter, the seminal idea is always the toughest part. And since the folks here at Hackaday are too old to enter, we thought we’d propose throwing around some ideas in the comments to get the ball rolling (the contest FAQ says it’s okay to get help from others so we’re not ruining it for everyone). We’ll go first.

It looks like experiments can be Biology or Physics related, and can’t use hazardous chemicals, weapons, or anything sharp. We’d love to see some tests that measure how well electronic sensors work in the microgravity. For instance, can you use a gyroscope sensor reliably in micro-gravity? What about an electronic compass; does it always point toward earth? What about robotic propulsion? We’d love to see a minature ROV swimming through the air like a water-bourne vessel would on earth.

Your turn. Leave a comment to let us know what you’d do if you could enter. Oh, and we’ve also embedded the contest promo video after the break.

Continue reading “Hackers Age 14-18 Can Compete To Put Their Project Into Space”

Brewing Up Some Quantum Dots

We’re taking a field trip from the backyard, garage, and basement hacking in order to look in on what research scientists are up to these days. A group from the Johns Hopkins Institute for NanoBioTechnology has been manufacturing quantum dots for use in the medical field. Made up of Cadmium Selenide, this is a nanomaterial that you can think of as individual crystals of the smallest size possible. Quantum dots have many uses. Here, [Charli Dvoracek] takes the recently manufactured dots and activates them with antibodies capable of targeting cancer cells. Once mixed with a biological sample, the dots embed themselves in the walls of the cancer, allowing the researchers to find those cells thanks to the phosphorescent properties of the dots.

The video after the breaks walks us through the various steps involved in growing these dots. [Charli] has the benefit of a fully outfitted lab, using tools like an argon-filled glove box to protect her from harmful off-gases. You’re not likely have this sort of thing in your home laboratory, but as we’ve seen before, you can make some of your own equipment, and produce interesting chemicals with simple processes. If you’re someone who already tinkers with chemistry experiments we want to hear about your exploits so please drop us a tip about what you’re up to.

Continue reading “Brewing Up Some Quantum Dots”