PiEEG Kit Is A Self-Contained Biosignal Laboratory

Back in 2023, we first brought you word of the PiEEG: a low-cost Raspberry Pi based device designed for detecting and analyzing electroencephalogram (EEG) and other biosignals for the purposes of experimenting with brain-computer interfaces. Developed by [Ildar Rakhmatulin], the hardware has gone through several revisions since then, with this latest incarnation promising to be the most versatile and complete take on the concept yet.

At the core of the project is the PiEEG board itself, which attaches to the Raspberry Pi and allows the single-board computer (SBC) to interface with the necessary electrodes. For safety, the PiEEG and Pi need to remain electrically isolated, so they would have to be powered by a battery. This is no problem while capturing data, as the Pi has enough power to process the incoming signals using the included Python tools, but could be an issue if you wanted to connect the PiEEG system to another computer, say.

For the new PiEEG Kit, the hardware is now enclosed in its own ABS carrying case, which includes an LCD right in the lid. While you’ve still got to provide your own power (such as a USB battery bank), having the on-board display removes the need to connect the Pi to some other system to visualize the data. There’s also a new PCB that allows the connection of additional environmental sensors, breakouts for I2C, SPI, and GPIO, three buttons for user interaction, and an interface for connecting the electrodes that indicates where they should be placed on the body right on the silkscreen.

The crowdsourcing campaign for the PiEEG Kit is set to begin shortly, and the earlier PiEEG-16 hardware is available for purchase currently if you don’t need the fancy new features. Given the fact that the original PiEEG was funded beyond 500% during its campaign in 2023, we imagine there’s going to be plenty of interest in the latest-and-greatest version of this fascinating project.

Continue reading “PiEEG Kit Is A Self-Contained Biosignal Laboratory”

Relativity Space Changes Course On Path To Orbit

In 2015, Tim Ellis and Jordan Noone founded Relativity Space around an ambitious goal: to be the first company to put a 3D printed rocket into orbit. While additive manufacturing was already becoming an increasingly important tool in the aerospace industry, the duo believed it could be pushed further than anyone had yet realized.

Rather than assembling a rocket out of smaller printed parts, they imagined the entire rocket being produced on a huge printer. Once the methodology was perfected, they believed rockets could be printed faster and cheaper than they could be traditionally assembled. What’s more, in the far future, Relativity might even be able to produce rockets off-world in fully automated factories. It was a bold idea, to be sure. But then, landing rockets on a barge in the middle of the ocean once seemed pretty far fetched as well.

An early printed propellant tank.

Of course, printing something the size of an orbital rocket requires an exceptionally large 3D printer, so Relativity Space had to built one. It wasn’t long before the company had gotten to the point where they had successfully tested their printed rocket engine, and were scaling up their processes to print the vehicle’s propellant tanks. In 2018 Bryce Salmi, then an avionics hardware engineer at Relatively Space, gave a talk at Hackaday Supercon detailing the rapid progress the company had made so far.

Just a few years later, in March of 2023, the Relativity’s first completed rocket sat fueled and ready to fly on the launch pad. The Terran 1 rocket wasn’t the entirely printed vehicle that Ellis and Noone had imagined, but with approximately 85% of the booster’s mass being made up of printed parts, it was as close as anyone had ever gotten before.

The launch of Terran 1 was a huge milestone for the company, and even though a problem in the second stage engine prevented the rocket from reaching orbit, the flight proved to critics that a 3D printed rocket could fly and that their manufacturing techniques were sound. Almost immediately, Relativity Space announced they would begin work on a larger and more powerful successor to the Terran 1 which would be more competitive to SpaceX’s Falcon 9.

Now, after an administrative shakeup that saw Tim Ellis replaced as CEO, the company has released a nearly 45 minute long video detailing their plans for the next Terran rocket — and explaining why they won’t be 3D printing it.

Continue reading “Relativity Space Changes Course On Path To Orbit”

Pi Hand Is A Digital Display Of A Different Sort

Hackers enjoy a good theme, and so it comes as no surprise that every time March 14th (Pi Day) rolls around, the tip line sees an uptick in mathematical activity. Whether it’s something they personally did or some other person’s project they want to bring to our attention, a lot of folks out there are very excited about numbers today.

One of our most prolific circumference aficionados is [Cristiano Monteiro], who, for the last several years, has put together a special project to commemorate the date. For 2025, he’s come up with a robotic hand that will use its fingers to show the digits of Pi one at a time. Since there’s only one hand, anything higher than five will be displayed as two gestures in quick succession, necessitating a bit of addition on the viewer’s part.

[Cristiano] makes no claims about the anatomical accuracy of his creation. Indeed, if your mitts look anything like this, you should seek medical attention immediately. But whether you think of them as fingers or nightmarish claws, it’s the motion of the individual digits that matter.

To that end, each one is attached to an MG90 servo, which an Arduino Nano drives with attached Servo Shield. From there, it’s just a matter of code to get the digits wiggling out the correct value, which [Cristiano] has kindly shared for anyone looking to recreate this project.

If you’re hungry for more Pi, the ghostly display that [Cristiano] sent in last year is definitely worth another look. While not directly related to today’s mathematical festivities, the portable GPS time server he put together back in 2021 is another fantastic build you should check out.

Continue reading “Pi Hand Is A Digital Display Of A Different Sort”

ClockworkPi Unveils New PicoCalc Handheld

Do you like scientific calculators? Don’t bother answering that question, you’re reading Hackaday so we already know the answer. We also know you’re a fan of building things yourself and open source, which makes us fairly sure you’ll be just as interested in the recently announced ClockworkPi PicoCalc as we are.

On the surface, it looks like a chunky scientific calculator, though on further inspection you’ll note it comes equipped with a QWERTY keyboard. But open up the case and what you’ve really got is an elaborate carrier board for the Raspberry Pi Pico. The PicoCalc supports all variants of the microcontroller, but realistically we can’t think of any reason that you wouldn’t just use the latest version.

With the MCU connected, you’ll have access to the PicoCalc’s 320×320 4-inch IPS screen, backlit I2C-connected keyboard, SD card slot, 8 MB PSRAM, and dual PWM speakers. Power is provided by a pair of 18650 cells (which you’ll need to supply on your own), and the board has the necessary circuitry to charge them up over USB-C.

Everything is housed in an injection molded case, but the project page says all the necessary CAD files will be eventually be released under the GPL v3 so you can 3D print or CNC your own enclosure. For now though, the only thing of note that seems to be in the PicoCalc GitHub repository is a PCB schematic.

The software side of things is a little less clear. The page mentions a BASIC interpreter, MP3 playback, and support for various programming languages, but we get the impression that’s just a list of stuff you can run on the Pi Pico. There are a few images that clearly show the PicoCalc actually being used as a calculator however, so there may be an official firmware yet to be revealed.

The PicoCalc kit is on sale now, and will set you back $75 USD — which actually includes a first-generation Pi Pico, on the off chance that you don’t already have a few laying around. We’ve been impressed with the previous offerings from ClockworkPi, so assuming this new kit maintains that same build quality, it seems like a fair enough price.

The Trials And Tribulations Of Building A Pasta Display

We love unique displays here at Hackaday. If you can figure out how to show information on some weird object, we’re all about it. So when [Julius Curt] wrote in to share his work on the Pasta Analog Display, we were hooked from the subject line.

But in reading his account, it ended up being even better than we hoped for. Because it turns out, getting pasta to behave properly in an electromechanical device is trickier than you might think. Oh sure, as [Julius] points out, those ridges on the side of penne might make them look like gears — but after spending the time and effort to build a particularly slick 3D printed frame to actually use them as such, it turns out they just won’t cooperate. You’d think the pasta makers of the world would have some respect for mechanical tolerances, but unfortunately not.

Continue reading “The Trials And Tribulations Of Building A Pasta Display”

Hackaday Europe 2025: Speaker Schedule And Official Event Page

Hackaday Europe 2025 is just days away, and we’ve got the finalized speaker schedule hot off the digital press. We’re also pleased to announce that the event page is now officially live, where you can find all the vital information about the weekend’s festivities in one place.

Whether you’ll be joining the fun in Berlin, or watching the live stream from home, we’ve got a fantastic lineup of speakers this year who are eager to tell us all about the projects that have been keeping them up at night recently:

Continue reading “Hackaday Europe 2025: Speaker Schedule And Official Event Page”