Video: Putting High Speed PCB Design to the Test

Designing circuit boards for high speed applications requires special considerations. This you already know, but what exactly do you need to do differently from common board layout? Building on where I left off discussing impedance in 2 layer Printed Circuit Board (PCB) designs, I wanted to start talking about high speed design techniques as they relate to PCBs.  This is the world of multi-layer PCBs and where the impedance of both the Power Delivery Network (PDN) and the integrity of the signals themselves (Signal Integrity or SI) become very important factors.

I put together a few board designs to test out different situations that affect high speed signals. You’ve likely heard of vias and traces laid out at right angles having an impact. But have you considered how the glass fabric weave in the board itself impacts a design? In this video I grabbed some of my fanciest test equipment and put these design assumptions to the test. Have a look and then join me after the break for more details on what went into this!

Continue reading “Video: Putting High Speed PCB Design to the Test”

Tearing Into a $1.3 Million Oscilloscope

Most hackers are rankled by those “Warranty Void If Broken” seals on the sides of new test equipment. Even if they’re illegal, they at least put the thought in your head that the space inside your new gear is off-limits, and that prevents you from taking a look at what’s inside. Simply unacceptable.

[Shahriar] has no fear of such labels and tears into just about everything that comes across his bench. Including, most recently, a $1.3 million 110-GHz oscilloscope from Keysight. It’s a teardown that few of us will ever get the chance to do, and fewer still would be brave enough to attempt. Thankfully he does, and the teardown video below shows off the remarkable engineering that went into this monster.

The numbers boggle the mind. Apart from the raw bandwidth, this is a four-channel scope (althought the unit [Shahriar] tested is a two-channel) that doesn’t split its bandwidth across channels. The sampling rate is 256 GS/s and the architecture is 10-bits, so this thing is dealing with 10 terabits per second. We found the extra thick PCBs, which are perhaps 32-layer boards, to be especially interesting, and [Shariar]’s tour of the front end was fascinating.

It all sounds like black magic at first, but he really makes the technology approachable, and his appreciation for fine engineering is obvious. If you’ve got even a passing interest in RF electronics you should check it out. You might want to brush up on microwave topics first, though; this Doppler radar teardown might help.

Continue reading “Tearing Into a $1.3 Million Oscilloscope”

Choosing A ‘Scope: Examining Bandwidth

A few weeks ago I asked the Hackaday community for some help and advice in buying a new budget oscilloscope. Thank you very much to those of you who responded both here online and in person among my friends closer to home. I followed the overwhelming trend in the advice I received, and bought myself a Rigol DS1054z, an instrument with which I am very happy. It’s a nominally a 50 MHz scope, but there’s a software hack that can bring it up to 100 MHz. How fast can it go?

My trusty Cossor, its 2 MHz bandwidth as yet unverified.
My trusty Cossor, its 2 MHz bandwidth as yet unverified.

This question became a mini scope-shootout after a conversation with my Hackaday colleague [Elliot] about measuring oscilloscope bandwidth, and then my fellow Oxford Hackspace members producing more than one scope for comparison. You know who you are, thank you. I found myself with ready access to several roughly equivalent models and one very high-end one in specification terms representing different strata of test equipment manufacture, and with the means to examine their performance.

Continue reading “Choosing A ‘Scope: Examining Bandwidth”

The Fastest Rise Time In The West: Making A Truly Quick Pulse Edge

When we are taught about oscillators as newbie engineers, we are shown a variety of waveforms on an oscilloscope or in a textbook. This is a sine wave, they say, this is a sawtooth, this is a square wave, and so on. We’re taught to look at the lines on the screen as idealised, a square wave is truly square, and the transition from low to high voltage and back again is instantaneous.

In most cases this assumption is harmless. If we look into the subject a little deeper we learn that what seemed an instantaneous cliff-face is in fact a very steep slope, but when a circuit does its business in milliseconds there is usually no harm in ignoring a transition time measured in nanoseconds. The glue logic for your Arduino project can take its time.

Sometimes though, the rise time of a logic transition is important. The application that prompted this article was the measurement of oscilloscope bandwidth by looking at how quickly the ‘scope catches up with a pulse that exceeds its bandwidth, for example. When the instrument can happily measure the transition times of all your usual  pulse generators, something out of the ordinary is called for. So it’s worth taking a look at the rise times you’d expect from everyday circuitry, examining a few techniques for generating rise times that are much faster.
Continue reading “The Fastest Rise Time In The West: Making A Truly Quick Pulse Edge”

What Lies Beneath: The First Transatlantic Communications Cables

For some reason, communications and power infrastructure fascinates me, especially the long-haul lines that move power and data over huge distances. There’s something about the scale of these projects that really gets to me, whether it’s a high-tension line marching across the countryside or a cell tower on some remote mountain peak. I recently wrote about infrastructure with a field guide that outlines some of the equipment you can spot on utility poles. But the poles and wires all have to end at the shore. Naturally we have to wonder about the history of the utilities you can’t see – the ones that run under the sea.

Continue reading “What Lies Beneath: The First Transatlantic Communications Cables”

Hacking VM for peak performance

[Cyber Explorer] recently ditched his collection of physical computers acting as servers by virtualizing the lot of them. But with every change there’s a drawback. Although it wasn’t too hard for him to set up the virtual machines, he did end up spending quite a bit of time trying to improve the bandwidth. Luckily he posted an article chronicling all of the VM tweaks he used to improve the system.

The experience involves both a Windows 8 machine, as well as a some Linux boxes meaning there’s something here for everybody. At each step in the process he performs some throughput tests to see how the boxes are performing. Tweaks are numerous, but include trying out different Ethernet drivers, making sure all modules are up to date, squashing at least one bug, and giving jumbo-frames a try.

[Thanks Omri]

Exercise bike actuates your download speeds; messes with music playback

We’re not featuring this project because it involves the tiniest exercise bike in the world. It’s on the front page because the speed-control features which this dynamic duo added are hilarious. They call it the Webcycle and it’s actually two hacks in one.

Way back in 2009 [Matt Gray] and [Tom Scott] slapped an Arduino on the bike and used it to measure the revolutions of the cranks (how fast your feet are going in circles). This was hooked up to the laptop which is fastened to the handlebars. This way you can surf the Internet while you work out, but the bandwidth is directly affected by pedal speed. If you want to watch video you’re going to have to sweat…. a lot. Check it out in the clip after the break.

This March they pulled the Webcycle out of storage so that it may ride again. This time it’s connected to the sound system in their exercise room. A record player motor is the victim in this case. You guessed it — pedal speed dictates the rate of the turntable, modulating the pitch drastically. Make sure the boss isn’t around when you watch this clip because it will be hard not to guffaw.

These guys really have fun with this hacks. It was [Tom’s] birthday that prompted that hacktacular mini golf course.

Continue reading “Exercise bike actuates your download speeds; messes with music playback”