“Giger Counter” Makes Radiation Detection Surreal

Here’s a quick question: are Geiger and Giger (as in H.R. Giger, designer of the Alien Xenomorph) pronounced the same? The answer is no. Nevertheless, the late artist has had his name mispronounced (for the record, it’s ghee-gur) by many over the years. [Steve DeGroof’s] friend posted a goofy tweet that gave him the inspiration to finally put a skeletal lid on the matter, the Giger Counter.

The innards are a Mightyohm Geiger Counter Kit. The external casing is where the true hack lies in this project, made from a 1:2 scale plastic skeleton model, flexible conduit, and dark metallic spray paint. Only the ribcage, some vertebrae, and part of the skull are used from the model. They are assembled in a delightfully inhuman fashion with some conduit wrapped around it and into the bottom of the ribcage for good measure. After some gluing and spray painting, the LED from the Geiger Counter kit is placed through a drilled hole in the skull while the board sits inside the ribcage. Getting the board in and out can be a little tricky, but it looks like the batteries can be changed without having to pull the whole board out.

Check out the video below to see the Giger Counter. If you want another hack inspired by H.R. Giger’s artistic vision, take a look at this Xenomorph suit we covered.  Or, if you can’t get enough Geiger counters, we’ve featured plenty of cool ones on this site.

Continue reading ““Giger Counter” Makes Radiation Detection Surreal”

image of the face of einstein

The Spooky Nature Of Electromagnetic Radiation

Our story begins a little over one hundred years ago in Bern, Switzerland, where a young man employed as a patent clerk went off to work. He took the electric trolley in each day, and each day he would pass an unassuming clock tower. But today was different, it was special. For today he would pose to himself a question – a question whose answer would set forth a fascinating dilemma.

The hands of the clock appeared to move the same no matter if his trolley was stopped or was speeding away from the clock tower. He knew that the electromagnetic radiation which enabled him to see the clock traveled at a finite speed. He also knew that the speed of the light was incredibly great compared to the speed of his trolley. So great that there would not be any noticeable difference in how he saw the hands of the clock move, despite him being at rest or in motion. But what if his trolley was moving at the speed of the reflected light coming from the clock? How would the hands of the clock appear to move? Indeed, they could not. Or if they did, it would not appear so to him. It would appear as if all movement of the clock’s hands had stopped – frozen in an instant of time.  But yet if he looked at the hands of the watch in his pocket, they would appear to move normally. How does one explain the difference between the time of the clock tower versus the time of his watch? And which one was correct?

There was no way for him to know that it would take three years to answer this question. No way for him to know that the answer would eventually lead to the discovery of matter and energy being one and the same. No way to know that he, this underemployed patent clerk making a simple observation, would soon unearth the answer to one of the greatest mysteries that had stumped every mind that came before his – the very nature of time itself.

Now it might have taken Einstein a few years to develop the answer we now know as the Special Theory of Relativity, but it most certainly took him no longer than a few days to realize that Isaac Newton…

must be wrong.

Continue reading “The Spooky Nature Of Electromagnetic Radiation”

Global Radiation Monitoring Network Update

Things have been busy at Global Radiation Monitoring Network Central Command. As a semifinalist in the Hackaday Prize, project creator [Radu Motisan] has quite a bit of work to do. He’s not slacking off either. With 33 project logs (and counting), [Radu] has been keeping us up to date with his monitoring network and progress on uRADMonitor , the actual monitoring hardware.

[Radu’s] latest news is that he’s ready to go into production with model A of the uRADMonitor. Moving from project to production can be an incredible amount of work due to sourcing parts, setting up assembly houses, and dealing with any snags that come up along the way. We’re sure [Radu] can handle it, though.

The network of uRADMonitors is also growing. A new monitor was just installed in Prescott, Arizona. This is the 10th unit in the USA.  You can view the map, data, and graphs of global radiation live on the uRADMonitor website.


SpaceWrencherThe project featured in this post is a semifinalist in The Hackaday Prize.

Solar Powered Wifi Radiation Sensor

Solar Radiation Detector

[Manish] packed lots of functionality into this radiation sensor module. The device is completely solar powered and weatherproof, so it can be mounted anywhere. It uses a Geiger Muller tube to monitor radiation and connects to the internet using wifi network to report the readings.

The design uses an Arduino Pro Mini to perform the monitoring and reporting. Wifi connectivity is provided by a RN-XV wifi module. A solar panel, Adafruit’s solar charger, and a LiPo battery are used to provide power to the device. It’s enclosed in Adafruit’s IP-66 rated weatherproof enclosure.

A custom Geiger Muller tube interface is used to interface with the tube. The interface is simple and cheap. It provides the high voltage required to drive the tube, and circuitry needed to detect the ionization events.

Once the device is connected to the internet, it uploads data directly to Cosm. This service lets the data be shared using Twitter, or accessed using an API. The project shows how to build a wireless networked sensor that directly connects to the internet for about $100.

Online Radiation Monitoring Station

geiger-counter-build

This is a Geiger counter which charts its readings on a webpage. [Radu Motisan] put a lot of time into the build and it shows. This thing is packed with features and the hardware choices were the best combinations found through several iterations of development.

In addition to radiation levels the sensor unit takes several other measurements. These include temperature, humidity, luminosity, and barometric pressure. All of the sensor data is monitored and gathered by an ATmega168 which can be charted on a webpage with the help of an ENC28J60 Ethernet chip. The collection and display of this data is detailed at the post linked above.

For those interested in the hardware development, [Radu] published many updates along the way. These are available in his forums posts, as well as his build log. He doesn’t have any videos of his recent work, but way back in May he did publish a clip (found after the break) which shows the testing of different Geiger tubes.

Continue reading “Online Radiation Monitoring Station”

Making Music With Radiation

[Jeff Keyser] from mightyohm.com got a chance to show off this interesting take on ambient music. He’s using his geiger counter kit to detect beta and gamma radiation. This then sends a pulse down the line to an Arduino to turn it into a musical note. The geiger counters put out a 1.ms 3v pulse though, so he first has to run this through a 74Ls04, which spits out the 5V the arduino wants. He’s admittedly no musician, but you can hear in the video it sounds fine. Especially considering they are all just C in different octaves. Those of us that are musicians probably would have gone with a B#.

The ambient noise is interesting, but when you realize it is due to radioactive decay, it becomes somehow more attention getting. We often forget about the invisible world around us. He even drops a few Uranium marbles onto the geiger counters to spice things up.

Continue reading “Making Music With Radiation”

Measure Radiation With Military Surplus

It’s really amazing what you can find at military surplus shops. [David] just built a radiation detector out of a DT-590A scintillation probe originally made to test if Air Force bases were contaminated with Plutonium. Who says nothing good came out of massive nuclear arsenals?

DT-590A / PDR-56 Gamma ray probes were made obsolete by the US Air Force a few years ago and they’re trickling into military surplus stores around the country and the Internet. [David] found the manual for this probe and put together a little circuit to drive this x-ray sensor. The build uses an ammeter as a simple dial, and includes a piezo speaker for the prerequisite Geiger counter ‘clicks.’

[David] also threw up a post on converting this x-ray probe into a general purpose Gamma probe, effectively making it a Geiger counter for the really dangerous radiation. You could always use your smart phone for the same task, but recycling military hardware imparts a good bit of geek cred.