Radio Station WWV: All Time, All The Time

Of all the rabbit holes we technical types tend to fall down, perhaps the one with the most twists and turns is: time. Some of this is due to the curiously mysterious nature of time itself, but more has to do with the various ways we’ve decided to slice and dice time to suit our needs. Most of those methods are (wisely) based upon the rhythms of nature, but maddeningly, the divisions we decided upon when the most precise instrument we had was our eyes are just a little bit off. And for a true time junkie, “a little bit off” can be a big, big problem.

Luckily, even the most dedicated timekeepers — those of us who feel physically ill when the clock on the stove and the clock on the microwave don’t match — have a place to go that’s a haven of temporal correctness: radio station WWV. Along with sister stations WWVB and WWVH, these stations are the voice of the US National Institutes for Standards and Technology’s Time and Frequency Division, broadcasting the official time for the country over shortwave radio.

Some might say the programming coming from these stations is a bit on the dry side, and it’s true that you can only listen to the seconds slip by for so long before realizing that there are probably better things to do with your day. But the WWV signals pack a surprising amount of information into their signals, some of it only tangentially related to our reckoning of time. This makes these stations and the services they provide essential infrastructure for our technological society, which in turn makes it worth your time to look into just how they do it.

Continue reading “Radio Station WWV: All Time, All The Time”

Can Google’s New AI Read Your Datasheets For You?

We’ve seen a lot of AI tools lately, and, of course, we know they aren’t really smart, but they sure fool people into thinking they are actually intelligent. Of course, these programs can only pick through their training, and a lot depends on what they are trained on. When you use something like ChatGPT, for example, you assume they trained it on reasonable data. Sure, it might get things wrong anyway, but there’s also the danger that it simply doesn’t know what you are talking about. It would be like calling your company’s help desk and asking where you left your socks — they simply don’t know.

We’ve seen attempts to have AI “read” web pages or documents of your choice and then be able to answer questions about them. The latest is from Google with NotebookLM. It integrates a workspace where you can make notes, ask questions, and provide sources. The sources can be text snippets, documents from Google Drive, or PDF files you upload.

You can’t ask questions until you upload something, and we presume the AI restricts its answers to what’s in the documents you provide. It still won’t be perfect, but at least it won’t just give you bad information from an unknown source. Continue reading “Can Google’s New AI Read Your Datasheets For You?”

Artemis’ Next Giant Leap: Orbital Refueling

By the end of the decade, NASA’s Artemis program hopes to have placed boots back on the Moon for the first time since 1972. But not for the quick sightseeing jaunts of the Apollo era — the space agency wants to send regular missions made up of international crews down to the lunar surface, where they’ll eventually have permanent living and working facilities.

The goal is to turn the Moon into a scientific outpost, and that requires a payload delivery infrastructure far more capable than the Apollo Lunar Module (LM). NASA asked their commercial partners to design crewed lunar landers that could deliver tens of tons of to the lunar surface, with SpaceX and Blue Origin ultimately being awarded contracts to build and demonstrate their vehicles over the next several years.

Starship and Blue Moon, note scale of astronauts

At a glance, the two landers would appear to have very little in common. The SpaceX Starship is a sleek, towering rocket that looks like something from a 1950s science fiction film; while the Blue Moon lander utilizes a more conventional design that’s reminiscent of a modernized Apollo LM. The dichotomy is intentional. NASA believes there’s a built-in level of operational redundancy provided by the companies using two very different approaches to solve the same goal. Should one of the landers be delayed or found deficient in some way, the other company’s parallel work would be unaffected.

But despite their differences, both landers do utilize one common technology, and it’s a pretty big one. So big, in fact, that neither lander will be able to touch the Moon until it can be perfected. What’s worse is that, to date, it’s an almost entirely unproven technology that’s never been demonstrated at anywhere near the scale required.

Continue reading “Artemis’ Next Giant Leap: Orbital Refueling”

Ask Hackaday: Could Rating Airlines Stop Flights From Spreading Diseases?

 

A few weeks ago, I found myself the victim of flights from hell. My first flight was cancelled, leaving me driving home late at night, only to wake again for a red-eye the next morning. That was cancelled as well, with the second replacement delayed by a further hour. All in all I ended up spending a good ten hours extra in the airport surrounded by tired, sick, and coughing individuals, and ended up a full 16 hours late to my destination. On the return, I’d again tangle with delays, and by the weekend’s close, I’d contracted a nasty flu for my trouble.

All this had me riled up and looking for revenge. I had lost hours of my life to these frustrations, and the respiratory havoc claimed a further week of my working life. It had me realizing that we could surely improve the performance and hygiene of our airliners with a simple idea: a website called Flights From Hell.

Continue reading “Ask Hackaday: Could Rating Airlines Stop Flights From Spreading Diseases?”

Mining And Refining: Titanium, Our Youngest Industrial Metal

Earlier in this series, we made the case for copper being “the metal that built technology.” Some readers took issue with that statement, noting correctly that meteoric iron and gold were worked long before our ancestors were able to locate and exploit natural copper outcroppings, therefore beating copper to the historical punch. That seems to miss the point, though; figuring out how to fashion gold decorations and iron trinkets doesn’t seem like building the foundations for industry. Learning to make tools from copper, either pure or alloyed with tin to make bronze? Now that’s how you build an industrial base.

So now comes the time for us to make the case for our most recent addition to humanity’s stable of industrial metals: titanium. Despite having been discovered in 1791, titanium remained locked away inside abundantly distributed ores until the 1940s, when the technological demands of a World War coupled with a growing chemical prowess and command of sufficient energy allowed us to finally wrest the “element of the gods” from its minerals. The suddenness of it all is breathtaking, too; in 1945, titanium was still a fantastically expensive laboratory oddity, but just a decade later, we were producing it by the (still very expensive) ton and building an entirely new aerospace industry around the metal.

In this installment of “Mining and Refining,” we’ll take a look at titanium and see why it took us over 11,000 years to figure out how to put it to work for us.

Continue reading “Mining And Refining: Titanium, Our Youngest Industrial Metal”

Italy Proposes Minimalist Lunar Outpost For Artemis

When humanity first step foot on the Moon, they couldn’t stay around for very long. The Apollo program was limited by the technology of the era — given the incredible cost per kilogram to put a payload down on the lunar surface, it wasn’t feasible to bring down enough consumables for a lengthy stay. Even if they could have carried sufficient food and water to last more than a few days, the limiting factor would have become how long the crew could realistically remain cooped up in the tiny Lunar Excursion Module (LEM).

In comparison, the Artemis program is far more ambitious. NASA wants to establish a long-term, and perhaps even permanent, human presence on our nearest celestial neighbor. This will be made possible, at least in part, to the greatly reduced launch costs offered by current and near-future launch vehicles compared to legacy platforms like the Saturn V or Space Shuttle. But cheaper rides to space is only part of the equation. NASA will also be leaning heavily on the lessons learned during the International Space Program; namely, the advantages of modular design and international cooperation.

While NASA and their commercial partners will still end up providing the bulk of the hardware for the Artemis program, many modules and components are being provided by other countries. From the Orion’s European Service Module (ESM) to the Japanese life support systems to be installed on the Lunar Gateway Station, America won’t be going to the Moon alone this time.

The latest international contribution to the Artemis program comes from the Italian Space Agency (ASI), who have announced their intention to develop a lunar habitation module they’re calling the Multi-Purpose Habitat (MPH) in collaboration with Thales Alenia Space.

Continue reading “Italy Proposes Minimalist Lunar Outpost For Artemis”

Falsified Photos: Fooling Adobe’s Cryptographically-Signed Metadata

Last week, we wrote about the Leica M11-P, the world’s first camera with Adobe’s Content Authenticity Initiative (CAI) credentials baked into every shot. Essentially, each file is signed with Leica’s encryption key such that any changes to the image, whether edits to the photo itself or the metadata, are tracked. The goal is to not only prove ownership, but that photos are real — not tampered with or AI-generated. At least, that’s the main selling point.

Although the CAI has been around since 2019, it’s adoption is far from widespread. Only a handful of programs support it, although this list includes Photoshop, and its unlikely anybody outside the professional photography space was aware of it until recently. This isn’t too surprising, as it really isn’t relevant to the casual shooter — when I take a shot to upload to Instagram, I’m rarely thinking about whether or not I’ll need cryptographic proof that the photo wasn’t edited — usually adding #nofilter to the description is enough. Where the CAI is supposed to shine, however, is in the world of photojournalism. The idea is that a photographer can capture an image that is signed at the time of creation and maintains a tamper-proof log of any edits made. When the final image is sold to a news publisher or viewed by a reader online, they are able to view that data.

At this point, there are two thoughts you might have (or, at least, there are two thoughts I had upon learning about the CAI)

  1. Do I care that a photo is cryptographically signed?
  2. This sounds easy to break.

Well, after some messing around with the CAI tools, I have some answers for you.

  1. No, you don’t.
  2. Yes, it is.

Continue reading “Falsified Photos: Fooling Adobe’s Cryptographically-Signed Metadata”