Tracking Boats And Ships In Real Time At The Same Time

Software-defined radio came on the hacker scene in a big way less than a decade ago thanks to the discovery that a small USB-based TV tuner dongle could be used for receiving all kinds of radio transmissions. Two popular projects from that era are tracking nearby airplanes and boats in real time. Of course, these projects rely on different frequencies and protocols, but if you live in a major port city like [Ian] then his project that combines both into a single user interface might be of interest.

This project uses an RTL-SDR dongle for the marine traffic portion of the project, but steps up to a FlightAware Pro dongle for receiving telemetry from airplanes. Two separate antennas are needed for this, and all of the information is gathered and handled by a pair of Raspberry Pis. The Pis communicate with various marine and air traffic databases as well as handles the custom user interface that knits both sets of information together. This interface was custom-built from a previous project of his and was repurposed slightly to fit the needs of this one.

This is a great project that goes into a lot of interesting detail about how the web traffic moves and how the UI works, so even if you’re not into software-defined radio it might be worth a look. However, it’s also worth noting that it hasn’t been easier to set up a system like this thanks to the abundance and low price of RTL-SDR dongles and the software tools that make setting them up a breeze.

Airlines Seek Storage For Grounded Fleets Due To COVID-19

Ask any airline executive what their plans were back in January 2020, and you’d probably get the expected spiel about growing market share and improving returns for shareholders. Of course, the coronovirus pandemic quickly changed all that in the space of just a few months. Borders closed, and worldwide air travel ground to a halt.

Suddenly, the world’s airlines had thousands of planes and quite literally nowhere to go. Obviously, leaving the planes just sitting around in the open wouldn’t do them any good. So what exactly is involved in mothballing a modern airliner?

Continue reading “Airlines Seek Storage For Grounded Fleets Due To COVID-19”

Infinite Flying Glider

If you’ve exhausted your list of electronics projects over the past several weeks of trying to stay at home, it might be time to take a break from all of that and do something off the wall. [PeterSripol] shows us one option by building a few walkalong gliders and trying to get them to fly forever.

Walkalong gliders work by following a small glider, resembling a paper airplane but made from foam, with a large piece of cardboard. The cardboard generates an updraft which allows the glider to remain flying for as long as there’s space for it. [PeterSripol] and his friends try many other techniques to get these tiny gliders, weighing in at around half a gram, to stay aloft for as long as possible, including lighting several dozen tea candles to generate updrafts, using box fans, and other methods.

If you really need some electricity in your projects, the construction of the foam gliders shows a brief build of a hot wire cutting tool using some nichrome wire attached to a piece of wood, and how to assemble the gliders so they are as lightweight as possible. It’s a fun project that’s sure to be at least several hours worth of distraction, or even more if you have a slightly larger foam glider and some spare RC parts.

Continue reading “Infinite Flying Glider”

Flywheel Stores Energy To Power An Airplane – Eventually

Question: Can a flywheel store enough energy to power an airplane? Answer: Yes it can, for certain values of “flywheel” and “airplane.”

About the only person we can think of who would even attempt to build a flywheel-powered airplane is [Tom Stanton]. He’s a great one for off-the-wall ideas that often pay off, like his Coandฤƒ effect hovercraft, as well as for ideas that never got far off the ground, or suddenly met it again. For most of the video below, it seems like his flywheel-powered plane is destined to stay firmly in the last category, and indeed, the idea of a massive flywheel taking flight seems counterintuitive. But [Tom] reminds us that since the kinetic energy stored by a flywheel increases as the square of angular velocity, how fast it’s turning is more important than how massive it is. The composite carbon fiber and aluminum flywheel is geared to the propeller of a minimal airplane through 3D-printed bevel gears, and is spun up with an external BLDC motor.

Sadly, the plane never made it very far, no matter how much weight was trimmed. But [Tom] was able to snatch victory from the jaws of defeat by making the propeller the flywheel – he printed a ring connecting the blades of the prop and devised a freewheel clutch to couple it to the motor. The flywheel prop stored enough energy to complete a few respectable flights, as well as suffer a few satisfyingly spectacular disintegrations.

As always, hats off to [Tom] for not being bashful about sharing his failures so we can all learn, and for the persistence to make his ideas take flight.

Continue reading “Flywheel Stores Energy To Power An Airplane – Eventually”

How Efficient Can An Airplane Be? The Celera 500L Sets To Find Out

One of the current hype trends is the supposedly imminent revolution in air transport. So many companies showing digital renderings and mockups to illustrate their own utopic vision for the future, reaching fevered pitch at events like CES 2020. But aviation has a long history of machinery that turned out to be impractical. Wouldn’t it be great if a company focused their resources on building real aircraft and get real data before cranking up their hype machine? The people at Otto Aviation thought so, and their Celera 500L has reportedly taken to the skies.

If you said “Otto who?” you are not alone. The company has zero PR activity to speak of. Limited internet attention started from aviation fans spotting the Celera 500L under construction at its Southern California airfield. Its unusual exterior appearance and proximity to Hollywood made some dismiss it at first as a movie prop. Anyone with a passing interest in aerospace engineering could immediately see aerodynamics was a priority in this design, its long thin unswept glider-like wings implies the goal is fuel efficiency rather than speed. This was confirmed by internet sleuths uncovering patents filed by people associated with the company.

The patents include very lofty fuel efficiency goals, and industry veterans are skeptical. Fuel is a huge factor in aircraft operating costs where small increases in efficiency translate to big dollars over a plane’s lifetime. It’s hard to believe every other plane maker would deliberately leave so much on the table. There must be far more to the 500L inside that teardrop shaped body, with innovations and potentially making some trade-offs no other company has made. We can see two of them from the outside: the 500L traded off some pilot visibility for aerodynamics, and it has very little ground clearance to absorb the impact of less-than-ideal landings.

It’s certainly possible the ideas leading to this plane will fail to pan out in reality like so many ideas before them. Aerospace engineering is a field littered with debris of concepts that looked great on paper but crashed against a hard and unforgiving reality. But at least Otto Aviation is trying something new by building real hardware to get real data, something well worth recognizing in a sea of hyped up fantasy renderings.

[Photo via SoCal Airshow Review]

The Rotodyne Fails To Take Off

Bacon and eggs, chocolate and peanut butter, salt and pepper; some things just go together. You’d think that a mashup of an airplane and a helicopter would be great, right? The Fairey Rotodyne was just such a thing from the late 1950s and while it looked to be the wave of the future, it never took off — at least, not in the business sense at least. [Mustard] has an excellent video about the machine including some flight footage and explains why it failed to take over the aviation market. You can watch the video below.

While it does look like a helicopter mated with an airplane, it’s actually a bit different. The rotor isn’t normally powered at all. However, it does turn in forward flight and generates about half the lift the plane needs. That explains the stubby wings. The topside rotor has small jets at the tips that can be used during vertical take off, landing, and hovering modes.

One of the craft’s four tip jets.

For its time, it was fast and efficient, especially compared to contemporary helicopters. This type of plane was known as an autogyro and actually appeared in the 1930s as a safety mechanism since an autogyro can land in an autorotation mode.

According to the video, the noisy tip jets and production delays killed the beast. There was only one prototype built, but there was something we found very attractive about it. There have been, of course, other autogyros. British, German, Japanese, and Russian military have used autogyros at one time or another. The United States Postal Service was known to employ at least one.

Even today, there are about a thousand autogyros used by different military and police organizations. They are cheaper than a helicopter to buy and fly. Sadly, though, it doesn’t look like autogyros will ever become a common sight. Like an airship, they seem like a callback to an earlier time when you have a chance to spot one.

We are always surprised we don’t see more model autogyros. We wonder how they’d be at cutting down trees.

Continue reading “The Rotodyne Fails To Take Off”

Ion Powered Airplane: Not Coming To An Airport Near You

Not that we don’t love Star Trek, but the writers could never decide if ion propulsion was super high tech (Spock’s Brain) or something they used every day (The Menagerie). Regardless, ion propulsion is real and we have it today on more than one spacecraft. However, MIT recently demonstrated an ion-powered airplane. How exciting! An airplane with no moving parts that runs on electricity. Air travel will change forever, right? According to [Real Engineering], ion-propelled (full-sized) aircraft run into problems with the laws of physics. You can see the video explaining that, below.

To understand why, you need to know two things: how ion drive works and how the engines differ when using them in an atmosphere. Let’s start with a space-based ion engine, a topic we’ve covered before. Atoms are turned into ions which are accelerated electrically. So the ion engine is just using electricity to create thrust exhaust instead of burning rocket fuel.

Continue reading “Ion Powered Airplane: Not Coming To An Airport Near You”