Retrotechtacular: 1980s Restoration Of San Francisco’s Cable Car System

The cable car system of San Francisco is the last manually operated cable car system in the world, with three of the original twenty-three lines still operating today. With these systems being installed between 1873 and 1890, they were due major maintenance and upgrades by the time the 1980s and with it their 100th year of operation rolled around. This rebuilding and upgrading process was recorded in a documentary by a local SF television station, which makes for some fascinating viewing.

San Francisco cable car making its way through traffic. Early 20th century.
San Francisco cable car making its way through traffic. Early 20th century.

While the cars themselves were fairly straight-forward to restore, and the original grips that’d latch onto the cable didn’t need any changes. But there were upgrades to the lubrication used (originally pine tar), and the powerhouse (the ‘barn’) was completely gutted and rebuilt.

As opposed to a funicular system where the cars are permanently attached to the cable, a cable car system features a constantly moving cable that the cars can grip onto at will, with most of the wear and tear on the grip dies. Despite researchers at San Francisco State University (SFSU) investigating alternatives, the original metal grip dies were left in place, despite their 4-day replacement schedule.

Ultimately, the rails and related guides were all ripped out and replaced with new ones, with the rails thermite-welded in place, and the cars largely rebuilt from scratch. Although new technologies were used where available, the goal was to keep the look as close as possible to what it looked at the dawn of the 20th century. While more expensive than demolishing and scrapping the original buildings and rolling stock, this helped to keep the look that has made it a historical symbol when the upgraded system rolled back into action on June 21, 1984.

Decades later, this rebuilt cable car system is still running as smoothly as ever, thanks to these efforts. Although SF’s cable car system is reportedly mostly used by tourists, the technology has seen somewhat of a resurgence. Amidst a number of funicular systems, a true new cable car system can be found in the form of e.g. the MiniMetro system which fills the automated people mover niche.

Continue reading “Retrotechtacular: 1980s Restoration Of San Francisco’s Cable Car System”

Retrotechtacular: The Deadly Shipmate

During World War II, shipboard life in the United States Navy was a gamble. No matter which theater of operations you found yourself in, the enemy was all around on land, sea, and air, ready to deliver a fatal blow and send your ship to the bottom. Fast forward a couple of decades and Navy life was just as hazardous but in a different way, as this Navy training film on the shipboard hazards of low-voltage electricity makes amply clear.

With the suitably scary title “115 Volts: A Deadly Shipmate,” the 1960 film details the many and various ways sailors could meet an untimely end, most of which seemed to circle back to attempts to make shipboard life a little more tolerable. The film centers not on the risks of a ship’s high-voltage installations, but rather the more familiar AC sockets used for appliances and lighting around most ships. The “familiarity breeds contempt” argument rings a touch hollow; given that most of these sailors appear to be in their 20s and 30s and rural electrification in the US was still only partially complete through the 1970s, chances are good that at least some of these sailors came from farms that still used kerosene lamps. But the point stands that plugging an unauthorized appliance into an outlet on a metal ship in a saltwater environment is a recipe for being the subject of a telegram back home.

The film shows just how dangerous mains voltage can be through a series of vignettes, many of which seem contrived but which were probably all too real to sailors in 1960. Many of the scenarios are service-specific, but a few bear keeping in mind around the house. Of particular note is drilling through a bulkhead and into a conduit; we’ve come perilously close to meeting the same end as the hapless Electrician’s Mate in the film doing much the same thing at home. As for up-cycling a discarded electric fan, all we can say is even brand new, that thing looks remarkably deadly.

The fact that they kept killing the same fellow over and over for each of these demonstrations doesn’t detract much from the central message: follow orders and you’ll probably stay alive. In an environment like that, it’s probably not bad advice.

Continue reading “Retrotechtacular: The Deadly Shipmate”

Retrotechtacular: The TV Bombs Of WWII

Anyone who was around for the various wars and conflicts of the early 2000s probably recalls the video clips showing guided bombs finding their targets. The black-and-white clips came from TV cameras mounted in the nose of the bomb, and were used by bombardiers to visually guide the warhead to the target — often providing for a level of precision amounting to a choice of “this window or that window?” It was scary stuff, especially when you thought about what was on the other side of the window.

Surprisingly, television-guide munitions aren’t exactly new, as this video on TV-guided glide bombs in WWII indicates. According to [WWII US Bombers], research on TV guidance by the US Army Air Force started in 1943, and consisted of a plywood airframe built around a standard 2000-pound class gravity bomb. The airframe had stubby wings for lift and steerable rudders and elevators for pitch and yaw control. Underneath the warhead was a boxy fairing containing a television camera based on an iconoscope or image orthicon, while all the radio gear rode behind the warhead in the empennage. A B-17 bomber could carry two GB-4s on external hardpoints, with a bulky TV receiver provided for the bombardier to watch the bomb’s terminal glide and make fine adjustments with a joystick.

In testing, the GB-4 performed remarkably well. In an era when a good bombardier was expected to drop a bomb in a circle with a radius of about 1,200′ (365 meters) from the aim point, GB-4 operators were hitting within 200′ (60 meters). With results like that, the USAAF had high hopes for the GB-4, and ordered it into production. Sadly, though, the testing results were not replicated in combat. The USAAF’s 388th Bomber Group dropped a total of six GB-4s against four targets in the European Theater in 1944 with terrible results. The main problem reported was not being able to see the target due to reception problems, leaving the bombardiers to fly blind. In other cases, the bomb’s camera returned a picture but the contrast in the picture was so poor that steering the weapon to the target was impossible. On one unfortunate attack on a steel factory in Duren, Germany, the only building with enough contrast to serve as an aiming point was a church six miles from the target.

The GB-4’s battlefield service was short and inglorious, with most of the 1,200 packages delivered never being used. TV-guided bombs would have to wait for another war, and ironically it would be the postwar boom in consumer electronics and the explosion of TV into popular culture would move the technology along enough to make it possible.

Continue reading “Retrotechtacular: The TV Bombs Of WWII”

Retrotechtacular: Color TV

We have often wondered if people dreamed in black and white before the advent of photography. While color pictures eventually became the norm, black and white TV was common for many years. After all, a TV set was a big investment, so people didn’t run out and buy the latest TV every year. Even if you did buy a new or used TV, a black and white model was much less expensive and, for many years, some shows were in black and white anyway. RCA, of course, wanted you to buy a color set. [PeriscopeFilm] has a 1963 promotional film from RCA extolling the virtues of a color set. The video also shows something about how the sets were made, as you can see below.

We aren’t sure we’d have led with the idea that color could save your life in this context, but we have to salute the melodrama. There is a good bit of footage of picture tube manufacturing, although the technical detail is — understandably — aimed at the general public.

Continue reading “Retrotechtacular: Color TV”

Retrotechtacular: Making Enough Merlins To Win A War

From the earliest days of warfare, it’s never been enough to be able to build a deadlier weapon than your enemy can. Making a sharper spear, an arrow that flies farther and straighter, or a more accurate rifle are all important, but if you can’t make a lot of those spears, arrows, or guns, their quality doesn’t matter. As the saying goes, quantity has a quality of its own.

That was the problem faced by Britain in the run-up to World War II. In the 1930s, Rolls-Royce had developed one of the finest pieces of engineering ever conceived: the Merlin engine. Planners knew they had something special in the supercharged V-12 engine, which would go on to power fighters such as the Supermarine Spitfire, and bombers like the Avro Lancaster and Hawker Hurricane. But, the engine would be needed in such numbers that an entire system would need to be built to produce enough of them to make a difference.

“Contribution to Victory,” a film that appears to date from the early 1950s, documents the expansive efforts of the Rolls-Royce corporation to ramp up Merlin engine production for World War II. Compiled from footage shot during the mid to late 1930s, the film details not just the exquisite mechanical engineering of the Merlin but how a web of enterprises was brought together under one vast, vertically integrated umbrella. Designing the engine and the infrastructure to produce it in massive numbers took place in parallel, which must have represented a huge gamble for Rolls-Royce and the Air Ministry. To manage that risk, Rolls-Royce designers made wooden scale models on the Merlin, to test fitment and look for potential interference problems before any castings were made or metal was cut. They also set up an experimental shop dedicated to looking at the processes of making each part, and how human factors could be streamlined to make it easier to manufacture the engines.

Continue reading “Retrotechtacular: Making Enough Merlins To Win A War”

Retrotechtacular: Another Thing Your TV No Longer Needs

As Hackaday writers we don’t always know what our colleagues are working on until publication time, so we all look forward to seeing what other writers come up with. This week it was [Al Williams] with “Things Your TV No Longer Needs“, a range of gadgets from the analogue TV era, now consigned to the history books. On the bench here is a device that might have joined them, so in taking a look at it now it’s by way of an addendum to Al’s piece.

When VHF Was Not Enough

In a Dutch second-had store while on my hacker camp travels this summer, I noticed a small grey box. It was mine for the princely sum of five euros, because while I’d never seen one before I was able to guess exactly what it was. The “Super 2” weighing down my backpack was a UHF converter, a set-top box from before set-top boxes, and dating from the moment around five or six decades ago when that country expanded its TV broadcast network to include the UHF bands. If your TV was VHF it couldn’t receive the new channels, and this box was the answer to connecting your UHF antenna to that old TV.

It’s a relatively small plastic case about the size of a chunky paperback book, on the front of which is a tuning knob and scale in channels and MHz, on the top of which are a couple of buttons for VHF and UHF, and on the back are a set of balanced connectors for antennas and TV set. It’s mains powered, so there’s a mains lead with an older version of the ubiquitous European mains plug. Surprisingly it comes open with a couple of large coin screws on the underside, so it’s time to take a look inside. Continue reading “Retrotechtacular: Another Thing Your TV No Longer Needs”

Retrotechtacular: Powerline Sagging And Stringing In The 1950s

While high-voltage transmission lines are probably the most visible components of the electrical grid, they’re certainly among the least appreciated. They go largely unnoticed by the general public — quick, name the power line closest to you right now — at least until a new one is proposed, causing the NIMBYs and BANANAs to come out in force. To add insult to injury, those who do notice the megastructures that make modern life possible rarely take a moment to appreciate the engineering that goes into stringing up hundreds of miles of cable and making sure it stays up.

Not so the Bonneville Power Administration, the New Deal-era federal agency formed to exploit the hydroelectric abundance of the Pacific Northwest of the United States, which produced this 1950 gem detailing the stringing and sagging of power lines. Unsurprisingly, the many projects needed to wire together the often remote dams to the widely distributed population centers in an area that was only just starting to see growth began in the BPA’s offices, where teams of engineers hunched over desks worked out the best routes. Paper, pencil, and slide rules were the tools of the trade, along with an interesting gadget called a conductor sag template, a hardware implementation of the catenary equation that allowed the “sagger” to determine the height of each tower. The conductors, either steel-cored aluminum or pure copper, were also meticulously selected based on tensile strength, expected wind and ice loading, and the electrical load the line was expected to carry.

Once the engineers had their say, the hard work of physically stringing the wires began out in the field. One suspects that the work today is much the same as it was almost eighty years ago, save for much more stringent health and safety regulations. The prowess needed to transfer the wires from lifting sheaves to the insulators is something to behold, and the courage required to work from ladders hanging from wires at certain death heights is something to behold. But to our mind, the real heroes were the logistics fellows, who determined how much wire was needed for each span and exactly where to stage the reels. It’s worth sparing a moment’s thought for the daring photographer who captured all this action, likely with little more than a leather belt and hemp rope for safety.

Continue reading “Retrotechtacular: Powerline Sagging And Stringing In The 1950s”