Of Roach Killer and Rust Remover: Sam Zeloof’s Garage-Made Chips

A normal life in hacking, if there is such a thing, seems to follow a predictable trajectory, at least in terms of the physical space it occupies. We generally start small, working on a few simple projects on the kitchen table, or if we start young enough, perhaps on a desk in our childhood bedroom. Time passes, our skills increase, and with them the need for space. Soon we’re claiming an unused room or a corner of the basement. Skills build on skills, gear accumulates, and before you know it, the garage is no longer a place for cars but a place for pushing back the darkness of our own ignorance and expanding our horizons into parts unknown.

It appears that Sam Zeloof’s annexation of the family garage occurred fairly early in life, and to a level that’s hard to comprehend. Sam seems to have caught the hacking bug early, and by the time high school rolled around, he was building out a remarkably well-equipped semiconductor fabrication lab at home. Sam has been posting his progress regularly on his own blog and on Twitter, and he dropped by the 2018 Superconference to give everyone a lesson on semiconductor physics and how he became the first hobbyist to produce an integrated circuit using lithographic processes.

Continue reading “Of Roach Killer and Rust Remover: Sam Zeloof’s Garage-Made Chips”

Hackaday Links: August 5, 2018

Here’s something of historical interest. The daughter of Terry Holdt, project manager for the 6502, cleaned out a garage and found shelves full of MOS Technology binders, test results, notes, instructions for processes, letters to customers, and datasheets full of errata. Some of these documents have been posted on Twitter, and efforts are underway to collect, scan, upload, and preserve them. In the distance, a man in a fabulous suit is screaming, ‘donate them to the Internet Archive’.

This is a link to Defcad, the repository of 3D printable files for weapons. Under an agreement with the US Department of State, Defcad was set to go online on August 1st. This caused much handwringing in the tech journalist thoughtspace, with reporters calling to end the first amendment because they don’t like the second. Alyssa Milano chimed in. Defcad was ordered shut down by a federal judge in the western district of Washington before going live.

As you may well be aware, Printrbot ceased operations last month. It’s sad to see them go, but they made some acceptable machines and were really pushing the boundaries of what was possible with their infinite build volume prototype printer. But what about all those existing printrbots in the wild, you might ask. Well, good news for anyone who hasn’t changed their hotend over to an E3D yet: Ubis is going to be selling hotends. Get ’em while they’re hot (or not, I don’t know how this pun works).

File this one into the ‘awesome government auctions’ category. The city of Longmont, Colorado decommissioned their tornado sirens last year because they ‘self-activated’ and malfunctioned. These sirens were put up for auction, with a winning bid of $526. Someone bought the most annoying thing imaginable for just over five bills. The world of government auctions is amazing.

Sad Without a SID? This Comes Pretty Close

The MOS Technologies 6851, popularly known as the SID, is a legendary sound synthesiser integrated circuit from the early 1980s that is most famous for providing the Commodore 64 home computer with its ability to make noise. At the time it was significantly better than what could be found in competitor machines, making it a popular choice for today’s chiptune and demo scene artists.

There’s a snag for a modern-day SID-jockey though, the chip has been out of production for a quarter century and is thus in short supply. Emulation is a choice, but of little use for owners of original hardware so it’s fortunate that [Petros Kokotis] has produced a SID replacement using a Teensy 3.6.

The operation is simple enough, the Teensy provides all the requisite SID data lines via some level shifters for the host microcomputer, and uses [Frank Boesing]’s ReSID library to do the heavy lifting part of being a SID. You can download the code from a GitHub repository, and he’s posted a video we’ve put below the break showing a prototype in action with a real Commodore 64. The audio quality isn’t brilliant due to a phone camera recording from a very tinny speaker, but notwithstanding that it has the air of the real thing.

This isn’t the first SID we’ve seen here. How about a MIDI synth using one?

Continue reading “Sad Without a SID? This Comes Pretty Close”

Federico Faggin: The Real Silicon Man

While doing research for our articles about inventing the integrated circuit, the calculator, and the microprocessor, one name kept popping which was new to me, Federico Faggin. Yet this was a name I should have known just as well as his famous contemporaries Kilby, Noyce, and Moore.

Faggin seems to have been at the heart of many of the early advances in microprocessors. He played a big part in the development of MOS processors during the transition from TTL to CMOS. He was co-creator of the first commercially available processor, the 4004, as well as the 8080. And he was a co-founder of Zilog, which brought out the much-loved Z80 CPU. From there he moved on to neural networking chips, image sensors, and is active today in the scientific study of consciousness. It’s time then that we had a closer look at a man who’s very core must surely be made of silicon.

Continue reading “Federico Faggin: The Real Silicon Man”

Giving The World A Better SID

Here’s a business plan for you, should you ever run into an old silicon fab sitting in a dumpster: build Commodore SID chips. The MOS 6581 and 8580 are synthesizers on a chip, famously used in the demoscene, and even today command prices of up to $40 USD per chip. There’s a market for this, and with the right process, this could conceivably be a viable business plan.

Finding a silicon fab in a dumpster is a longshot, but here’s the next best thing: an FPGASID project. The FPGASID is a project to re-create the now-unobtanium MOS 6581 found in the Commodore 64.

The Commodore SID chip has been out of production for a while now, and nearly every available SID chip has already been snapped up by people building MIDIbox SIDs, or by Elektron for their SidStation, which has been out of production for nearly a decade. There is a demand for SID chips, one that has been filled by “clones” or recreations using ATmegas, Propellers, and nearly every other microcontroller architecture available. While these clones can get the four voices of the SID right, there’s one universal problem: the SID had analog filters, and no two SIDs ever sounded alike.

From the audio samples available on the project page for the FPGASID, the filters might be a solved problem. The output from the FPGASID sounds a lot like the output from a vintage SID. Whether or not this is what everyone agrees a SID should sound like is another matter entirely, but this is the best attempt so far to drag the synth on a chip found in the Commodore 64 into modern times.

The files, firmware, and FPGA special sauce aren’t available yet, but the FPGASID is in alpha testing, with a proper release tentatively scheduled for early 2017. Maybe now it’s time to dig out those plans for the Uber MIDIbox, with octophonic SID goodness.

Building The First Digital Camera

While the official history of the digital camera begins with a Kodak engineer tinkering around with digital electronics in 1975, the first digital camera was actually built a few months prior. At the Vintage Computer Festival East, [William Sudbrink] rebuilt the first digital camera. It’s wasn’t particularly hard, either: it was a project on the cover of Popular Electronics in February, 1975.

Cromemco catalog page for the Cyclops, the first digital camera
Cromemco catalog page for the Cyclops, the first digital camera

[William]’s exhibit, Cromemco Accessories: Cyclops & Dazzler is a demonstration of the greatest graphics cards you could buy for S-100 systems and a very rare, very weird solid-state TV camera. Introduced in the February, 1975 issue of Popular Electronics, the Cyclops was the first digital camera. This wasn’t a device that used a CCD or a normal image sensor. The image sensor in the Cyclops was a 1 kilobit DRAM from MOS, producing a digital image thirty-two pixels square.

The full description, schematic, circuit layout, and theory of operation are laid out in the Popular Electronics article; all [William] had to do was etch a PCB and source the components. The key part – a one kilobit MOS DRAM in a metal can package, carefully decapsulated – had a date code of 1976, but that is the newest component in the rebuild of this classic circuit.

To turn this DRAM into digital camera, the circuit sweeps across the rows and columns of the DRAM array, turning the charge of each cell into an analog output. This isn’t a black or white camera; there’s gray in there, or green if you connect it to an oscilloscope.

This project in Popular Electronics would be manufactured by Cromemco in late 1975 and was released as their first product in January, 1976. The Cromemco was marketed as a digital camera, designed to interface with the MITS Altair 8800 computer, allowing anyone to save digital images to disk. This was the first digital camera invented, and the first digital camera sold to consumers. It’s an amazing piece of history, and very happy [William] was able to piece this together and bring it out to the Vintage Computer Festival this weekend.

DIY 6502 Laptop Computer Looks and Works Great

Over the years, we’ve seen a lot of DIY retro computers, but [Dirk Grappendorf] has created one of the most polished looking 6502 systems to date. His battery-powered portable machine utilizes a 4 line by 40 character LCD, and a modified USB keyboard. Cover all that in a slick 3D printed case, and you have a machine that reminds us quite a bit of the venerable TRS-80 Model 100.

homecomputer-6502-v8-via-bread[Dirk] has some great documentation to go with his computer. He started with a classic MOS 6502 processor. He surrounded the processor with a number of support chips correct for the early 80’s period. RAM is easy-to -use static RAM, while ROM is handled by UV erasable EPROM. A pair of MOS 6522 Versatile Interface Adapter (VIA) chips connect the keyboard, LCD, and any other peripherals to the CPU. Sound is of course provided by the 6581 SID chip.  All this made for a heck of a lot of wires when built up on a breadboard. The only thing missing from this build is a way to store software written on the machine. [Dirk] already is looking into ways to add an SD card interface to the machine.

homecomputer-6502-final-4The home building didn’t stop there though. [Dirk] designed and etched his own printed circuit board (PCB) for his computer. DIY PCBs with surface mount components are easy these days, but things are a heck of a lot harder with older through hole components. Every through hole pin and via had to be drilled, and soldered to the top and bottom layers of the board. Not to mention the fact that both layers had to line up perfectly to avoid missing holes! To say this was a lot of work would be an understatement.

homecomputer-6502-final-5[Dirk] designed a custom 3D printed case for his computer and printed it out on his Ultimaker. To make things fit, he created his design in halves, and glued the case once printing was complete.

If awesome hardware and a case weren’t enough, [Dirk] also spent time designing software for the machine. He wrote his own abbreviated BASIC interpreter along with several BASIC programs. You can find everything over on his GitHub repository.

We always love writing up well-documented, and just generally awesome projects like [Dirk’s]. If you know of any retro computers like this one, drop us a tip!

[Thanks MicroHex!]