Hackaday Prize Entry: 3D Prints For The Visually Impaired

Students with visual impairments can have difficulty with visual and spatial relationships. 3D printers can print almost everything, and with a lot of CAD work, this project in the Hackaday Prize provides these students with physical objects to learn any subject.

[Joan] and [Whosawhatsis] have already written the book on 3D printed science projects and have produced a 3D printed Braille map of a campus, but for this project, they’re making things a little bit simpler. Visually impaired students are tactile learners and the simplest of their 3D printable objects are fixed volume objects. This collection of 3D printable cylinders, cones, prisms, and pyramids give a physical representation of geometric solids. These objects also have another trick up their sleeve: they all contain the same volume. Fill the cylinder up with water, pour that water into a cone, and the student will discover that they all contain the same volume.  That’s useful for the visually impaired, but would also put these printable shapes at home in any elementary or middle school math class.

This project already has a rather large following, with teachers of the visually impaired contributing on a Google Group, and a ton of people downloading the models. [Joan] and [Whosawhatsis] are getting a lot of great feedback and growing the range of contributors, making this the start of an awesome community and a great Hackaday Prize entry.

Hackaday Prize Entry: Simpsons Hands

The creators of this Hackaday Prize entry say every month a new 3D-printed prosthetic solution comes on the scene. That doesn’t mean they’re not doing something different with their entry; yes, they’re still building a prosthetic hand, but they’re putting their own spin on it. This one isn’t using a string/cable/tendon setup, and the hand doesn’t even have four fingers. [Giovanni] and [Jenny] are going their own way, and what they’ve come up with is pretty special.

The most obvious feature of this prosthetic hand is a missing digit – Simpsons Hands – but this makes a lot of sense if you think about it. It’s doubtful any 3D-printed prosthetic hand will play a piano or touch type in the near future, so a pinkie finger is an appendix; an unneeded vanity that just increases the BOM and makes things harder to fit together.

Apart from the Simpsons Hands, this prosthetic hand is more or less what you would expect. The circuitry is just an Adafruit ATmega board, the mechanism is just a few servos, and the mechanics are well designed in carbon fiber PLA. What makes this prosthetic hand special for the team is that it’s the first of its kind in their native Colombia. Even if there’s a new 3D-printed prosthetic hand on Thingiverse every few weeks, this project makes it a truly global effort, and a great entry for the Hackaday Prize.

Hackaday Prize Entry: Tongue Computer Interface

The Hackaday Prize is a celebration of the greatest hardware put together by the greatest hackers on the planet. If you go over the entries, you’ll find user interfaces for everything. Need a wheelchair controlled by eye gaze? That won last year. A foot controlled mouse? Done. Need a device to talk to the Internet while you’re in a lucid dream? We’ve seen that.

We’ve seen a lot of really cool, really strange stuff in the Hackaday Prize. We haven’t seen anything like Pallette, a finalist for the Assistive Technologies portion of this year’s prize. It’s a tongue-computer interface. You put Pallette in your mouth, like a retainer, and you can control a computer. Telekinesis with a tongue.

At its most basic level, Pallette is a Bluetooth mouse, hidden away behind the lower jaw. Infrared sensors triangulate the position of the tongue, and a microphone detects the tongue tapping on Pallette. Everything you can do with a mouse can be done with Pallette.

At first glance, Pallette seems to be just a little bit absurd. This idea changes when you see the video the Pallette team produced for the Hackaday Prize finals. Some people can’t use their arms, and for this, Pallette is a godsend. With this, anyone can use a computer, control a Sphero, or  fly a drone. It’s a completely novel device that can be used for anything, and an excellent example of what we’re looking for in the Hackaday Prize.

Continue reading “Hackaday Prize Entry: Tongue Computer Interface”

Hackaday Prize Entry: The Internet Of Casts

[Alex]’s entry for the Hackaday Prize is extremely simple: it’s a device to monitor the inside of casts. For every itch, for every broken bone, for every skin irritation, and for every episode of House that featured compartment syndrome, the CastMinder has an answer.

The CastMinder is a simple electronic device embedded inside an orthopedic cast. Attached to this tiny bit of electronics are a few sensors, relaying pressure, moisture, temperature, and of course the battery level to an iOS app. The use case for this device is actually very simple; the pressure sensor is a great idea if you have a cast and you’re unconscious in a hospital. A moisture sensor will at least tell you how many trash bags wrapped around your broken arm are necessary to take a shower.

The entire device is based on the LightBlue Bean, a tiny Bluetooth-enabled device that can be powered by a CR2032 battery. The enclosure is 3D printed, and the entire device is small enough to be embedded in a cast without the wearer noticing much. It’s a great idea, and a great project to make it to the semifinals of the Hackaday Prize.

Hackaday Prize Entry: A 3D Printed Prosthetic Foot

For the last few years of the Hackaday Prize, there have been more than a few prosthetic devices presented. Almost without exception, the target for these projects are prosthetic hands. That’s a laudable goal, but mechanically, at least, feet are much more interesting. A human foot must sustain more than the weight of the human it’s attached to, and when it comes to making this out of plastic and metal, that means some crazy mechanics.

This Hackaday Prize entry is a complete reversal of all the prosthetic limbs we’ve seen before. It’s a prosthetic foot, and in the tradition of easily made and easily modified prosthetic arms, this prosthetic foot is mostly 3D printed.

A foot will take a lot more abuse and weight than a hand, and because of this 3D printing all the parts might not seem like the best idea. Exotic filaments exist, though, and the team behind this project does have access to a few pieces of test equipment in a materials engineering lab. With the right geometry, everything seems to support the load required.

There are some relatively new twists to this 3D printed prosthetic foot, including electronic control, a micro-hydraulic power plant, and sensors to measure and adjust the user’s gait. It’s all very cool, and deserves a lot more engineering than even the most complicated 3D printed prosthetic hand.

Hackaday Prize Entry: FLipMouse

The theme of the last Hackaday Prize challenge was Assistive Technologies, and with this comes technical solutions for people with severe motor restriction. One of the best we’ve seen is a device designed to use a sip and puff interface and buttons to control a cursor through USB. The almost too clever name for a device meant to be used via fingers or lips is the FLipMouse, and right now it’s in the running for the finals in the Hackaday Prize.

The FLipMouse isn’t so much a mouse as it is a very long and very sensitive joystick. The main method of interaction is a long, hollow tube wrapped with force sensors. These force sensors, like those seen in the Nintendo Power Glove or this other Hackaday Prize entry, turn the tube into an exceptionally sensitive joystick, meant to be gripped by the user’s lips. This tube is hollow, too, so a sip-and-puff interface is used to register right and left clicks. Of course, there are a few external buttons that may be remapped to anything.

How useful is it? This mouth-based mouse seems to be exceptionally capable. In the video below, [Harry Hötzinger] plays a synthesizer live on stage using a step sequencer and a mouse-controlled synth interface. It’s all highly optimized for the specific piece of music, but it is an incredible display of what you can do with a laser cutter and a Digikey BOM.

Continue reading “Hackaday Prize Entry: FLipMouse”

Hackaday Prize Entry: A Cheap, Portable Incubator

Millions of premature babies are born every year, and more than a few of these births occur hours away from any hospital with a NICU. [Manoj]’s entry for the Hackaday Prize is a simple, but very useful primitive incubator. Is it as good as the incubators you would find in a world-class hospital? No, but that’s not the point. This is an incubator for the rest of the world, where neonatal care is lacking.

You’re not going to get mechanical respiration or even oxygen into a device that is meant for the most far-flung areas on the planet, so this incubator focuses almost solely on monitoring. Packed inside a premie-sized sleeping bag is enough electronics to measure heart rate, blood oxygen, temperature and respiration. Also, there are a few resistive fabric elements to turn electricity into warmth.

Of course, anything you would find in any hospital or clinic would greatly outclass what this project has to offer. That’s really not the point, though; this incubator is cheap, can be deployed anywhere, and provides enough information to hopefully keep a preterm child alive. That’s good enough for us, and makes for a great entry into the Hackaday Prize.