A filament extruder is shown on a workbench. On the front is a knob and the display of a PID controller. A black geared spool is mounted on the top of the extruder, and on the right, a clear plastic bottle is positioned over a metal rod.

Turning Waste Plastic Into Spools Of Filament

Despite being a readily-available source of useful plastic, massive numbers of disposable bottles go to waste every day. To remedy this problem (or take advantage of this situation, depending on your perspective) [Igor Tylman] created the PETmachine, an extruder to make 3D printer filament from PET plastic bottles.

The design of the extruder is fairly standard for such machines: a knife mounted to the frame slices the bottle into one long strip, which feeds through a heated extruder onto a spool which pulls the plastic strand through the system. This design stands out, though, in its documentation and ease of assembly. The detailed assembly guides, diagrams, and the lack of crimped or soldered connections all make it evident that this was designed to be built in a classroom. The filament produced is of respectable quality: 1.75 mm diameter, usually within a tolerance of 0.05 mm, as long as the extruder’s temperature and the spool’s speed were properly calibrated. However, printing with the filament does require an all-metal hotend capable of 270 ℃, and a dual-drive extruder is recommended.

One issue with the extruder is that each bottle only produces a short strand of filament, which isn’t sufficient for printing larger objects. Thus, [Igor] also created a filament welder and a spooling machine. The welder uses an induction coil to heat up a steel tube, inside of which the ends of the filament sections are pressed together to create a bond. The filament winder, for its part, can wind with adjustable speed and tension, and uses a moving guide to distribute the filament evenly across the spool, avoiding tangles.

If you’re interested in this kind of extruder, we’ve covered a number of similar designs in the past. The variety of filament welders, however, is a bit more limited.

Thanks to [RomanMal] for the tip!

Nylon-Like TPU Filament: Testing CC3D’s 72D TPU

Another entry in the world of interesting FDM filaments comes courtesy of CC3D with their 72D TPU filament, with [Dr. Igor Gaspar] putting it to the test in his recent video. The use of the Shore hardness D scale rather than the typical A scale is a strong indication that something is different about this TPU. The manufacturer claims ‘nylon-like’ performance, which should give this TPU filament much more hardness and resistance to abrasion. The questions are whether this filament lives up to these promises, and whether it is at all fun to print with.

The CC3D 72D TPU filament used to print a bicycle's handlebar. (Credit: My Tech Fun, YouTube)
The CC3D 72D TPU filament used to print a bicycle’s handlebar grips. (Credit: My Tech Fun, YouTube)

TPU is of course highly hydrophilic, so keeping the filament away from moisture is essential. Printing temperature is listed on the spool as 225 – 245°C, and the filament is very bendable but not stretchable. For the testing a Bambu Lab X-1 Carbon was used, with the filament directly loaded from the filament dryer. After an overnight print session resulted in spaghetti due to warping, it was found that generic TPU settings  at 240ºC with some more nylon-specific tweaks seemed to give the best results, with other FDM printers also working well that way.

The comparison was against Bambu Lab’s 68D TPU for AMS. Most noticeable is that the 72D TPU easily suffers permanent deformation, while being much more wear resistant than e.g. PLA. That said, it does indeed seem to perform more like polyamide filaments, making it perhaps an interesting alternative there. Although there’s some confusion about whether this TPU filament has polyamide added to it, it seems to be pure TPU, just like the Bambu Lab 68D filament.

Continue reading “Nylon-Like TPU Filament: Testing CC3D’s 72D TPU”

Elegoo Rapid PETG Vs PETG Pro: Same Price, Similar Specs, Which To Buy?

Even within a single type of FDM filament there is an overwhelming amount of choice. Take for example Elegoo’s PETG filament offerings, which include such varieties like ‘Pro’ and ‘Rapid’. Both cost the same, but is there a reason to prefer one over the other, perhaps even just for specific applications? To test this, [Dr. Igor Gaspar] over at the My Tech Fun YouTube channel bought some spools of these two filaments and subjected both to a series of tests.

Obviously, the Rapid filament is rated for higher extrusion speeds – <270 vs <600 mm/s – while the website claims a higher required nozzle temperature that confusingly does not match those listed on the spool. There are quite a few differences in the listed specifications, including the physical and mechanical properties, which make it hard to draw any immediate conclusions. Could you perhaps just use Rapid PETG and forget about the Pro version?

Test objects were printed with a Bambu Lab P1P with an AMS unit. After calibrating the ideal temperature for each filament, a tensile break test gave a win to the Rapid PETG, followed by a layer adhesion test win. This pattern continued across further tests, with Rapid PETG either matching or beating the Pro PETG.

There are only two advantages of the Pro version that can be seen here, which are less moisture sensitivity and  stringing risk, and you of course get the luxury cardboard spool with the closed edges. Whether that’s enough to make you go ‘Pro’ remains to be seen, of course.

Continue reading “Elegoo Rapid PETG Vs PETG Pro: Same Price, Similar Specs, Which To Buy?”

Introducing PooLA Filament: Grass Fiber-Reinforced PLA

We’re probably all familiar with adding wood dust, hemp and carbon fibers to PLA filament, but there are so many other fillers one could add. During the completely unrelated recent heatwave in Germany, [Stefan] from CNCKitchen decided to give a new type of biodegradable filler type a shot by scooping some freshly dried cow patties off the very picturesque grazing fields near his place. In the resulting video a number of questions are answered about this ‘PooLA’ that nobody was asking, such as whether it makes for a good filler, and whether it smells bad while printing.

Perhaps unsurprisingly to those who have spent any amount of time around large herbivores like cows, cow dung doesn’t smell bad since it’s mostly composed of the grass fibers that are left over after the cow’s multiple stomachs and repeated chewing have done their thing. As [Stefan] and his colleagues thus found out was that printing with PooLA smells like printing with grass.

As for the practical benefits of PooLA, it adds a nice coloring, but like other ‘reinforced’ PLA filaments seems to trade flexibility for stiffness, so that at ratios of cow dung powder between 5 to 20% added to the PLA powder the test parts would break faster. Creating the filament was also a bit of a chore, for reasons that [Stefan] still has to figure out.

That said, aside from the technically unneeded bacterial corpses and other detritus in cow patties, using grass fibers in FDM filament isn’t a crazy idea, and might fit right in there with other fibers.

Continue reading “Introducing PooLA Filament: Grass Fiber-Reinforced PLA”

Turning Up The Heat On HT-PLA’s Marketing

PLA is probably the most-printed filament on the market these days, and is there any wonder? It’s cheap, it’s easy, and it doesn’t poison you (as quickly as its competitors, anyway). What it doesn’t do very well is take the heat. Polymaker’s new HT-PLA formulation promises to solve that, and [My Tech Fun] put those claims to the test in a recent video.

Polymaker claims its HT-PLA is heat-stable up-to 150 C, but still prints as easily as standard PLA at up to 300 mm/s. By “heat stable” they mean able to maintain dimensions and form at that temperature when not under any load, save perhaps its own weight. If you need high-temp mechanical properties, they also offer a glass-fiber infused HT-PLA-GF that they claim is heat resistant up to 110 C (that is, able to withstand load at that temperature) which is hard to sneeze at, considering you  you could print it on a stock Ender so long as you tossed a hardened nozzle on it.

Now it’s not a free lunch: to get the very best results, you do need to anneal the parts, which can introduce shrinkage and warping in HT-PLA, but that’s where HT-PLA-GF shines. If you want to see the results of the tests you can jump to 19:27 in the video, but the short version is that this is mechanically like PLA and can take the heat.

The verdict? If you like printing PLA and want to shove something in a hot car, you might want to try HT-PLA. Otherwise, it’s just like PLA. It prints like PLA, it looks like PLA, and when cold it behaves mechanically like PLA, which we suppose was rather what Polymaker was going for. There is no word yet on whether the additives that make it high-temp increase off-gassing or toxicity but since this stuff prints like PLA and can stand a little airflow, it should be easy to ventilate, which might make for fewer trade-offs when building an enclosure.

What do you think, will you be trying HT-PLA anytime soon? Let us know in the comments.

Continue reading “Turning Up The Heat On HT-PLA’s Marketing”

New Tullomer Filament Claims To Beat PEEK

Recently a company called Z-Polymers introduced its new Tullomer FDM filament that comes with a lofty bullet list of purported properties that should give materials like steel, aluminium, and various polymers a run for their money. Even better is that it is compatible with far lower specification FDM printers than e.g. PEEK. Intrigued, the folks over at All3DP figured that they should get some hands-on information on this filament and what’s it like to print with in one of the officially sanctioned Bambu Lab printers: these being the X1C & X1CE with manufacturer-provided profiles.

The world of engineering-grade FDM filaments has existed for decades, with for example PEEK (polyether ether ketone) having been around since the early 1980s, but these require much higher temperatures for the extruder (360+℃) and chamber (~90℃) than Tullomer, which is much closer (300℃, 50℃) to a typical high-performance filament like ABS, while also omitting the typical post-process annealing of PEEK. This assumes that Tullomer can match those claimed specifications, of course.

One of the current users of Tullomer is Erdos Miller, an engineering firm with a focus on the gas and oil industry. They’re using it for printing parts (calibration tooling) that used to be printed in filaments like carbon fiber-reinforced nylon (CF-PA) or PEEK, but they’re now looking at using Tullomer for replacing CF-PA and machined PEEK parts elsewhere too.

It’s still early days for this new polymer, of course, and we don’t have a lot of information beyond the rather sparse datasheet, but if you already have a capable printer, a single 1 kg spool of Tullomer is a mere $500, which is often much less or about the same as PEEK spools, without the requirement for a rather beefy industrial-strength FDM printer.

Reinforcing Plastic Polymers With Cellulose And Other Natural Fibers

While plastics are very useful on their own, they can be much stronger when reinforced and mixed with a range of fibers. Not surprisingly, this includes the thermoplastic polymers which are commonly used with FDM 3D printing, such as polylactic acid (PLA) and polyamide (PA, also known as nylon). Although the most well-known fibers used for this purpose are probably glass fiber (GF) and carbon fiber (CF), these come with a range of issues, including their high abrasiveness when printing and potential carcinogenic properties in the case of carbon fiber.

So what other reinforcing fiber options are there? As it turns out, cellulose is one of these, along with basalt. The former has received a lot of attention currently, as the addition of cellulose and similar elements to thermopolymers such as PLA can create so-called biocomposites that create plastics without the brittleness of PLA, while also being made fully out of plant-based materials.

Regardless of the chosen composite, the goal is to enhance the properties of the base polymer matrix with the reinforcement material. Is cellulose the best material here?

Continue reading “Reinforcing Plastic Polymers With Cellulose And Other Natural Fibers”