A Better Bowden Drive for Floppy Filaments

You might not think to use the word “rigid” to describe most 3D-printer filaments, but most plastic filaments are actually pretty stiff over a short length, stiff enough to be pushed into an extruder. Try the same thing with a softer plastic like TPE, though, and you might find yourself looking at this modified Bowden drive for elastomeric filaments.

The idea behind the Bowden drive favored by some 3D-printer designers is simple: clamp the filament between a motor-driven wheel and an idler to push it up a pipe into the hot end of the extruder. But with TPE and similar elastomeric filaments, [Tech2C] found that the Bowden drive on his Hypercube printer was causing jams and under-extrusion artifacts in finished prints. A careful analysis of the stock drive showed a few weaknesses, such as how much of the filament is not supported on the output side of the wheel. [Tech2C] reworked the drive to close that gap and also to move the output tube opening closer to the drive. The stock drive wheel was also replaced with a smaller diameter wheel with more aggressive knurling. Bolted to the stepper, the new drive gave remarkably improved results – a TPE vase was almost flawless with the new drive, while the old drive had blobs and artifacts galore. And a retraction test print showed no stringing at all with PLA, meaning the new drive isn’t just good for the soft stuff.

All in all, a great upgrade for this versatile and hackable little printer. We’ve seen the Hypercube before, of course – this bed height probe using SMD resistors as strain gauges connects to the other end of the Bowden drive.

Continue reading “A Better Bowden Drive for Floppy Filaments”

3D Printed Bicycle Tire Not Full of Hot Air

To show off its new TPU filament called PRO FLEX, BigRep GmbH posted a video showing a 3D printed bike tire that uses a flexible plastic structure instead of air. The video shows them driving the bike around Berlin.

According to the company, the filament will allow the creation of a large number of industrial objects not readily built with other types of plastic. Their release claims the material has high temperature resistance, low temperature impact resistance, and is highly durable. Applications include gear knobs, door handles, skateboard wheels, and other flexible parts that need to be durable.

The material has a Shore 98 A rating. By way of comparison, a shoe heel is typically about 80 on the same scale and an automobile tire is usually around 70 or so. The hard rubber wheels you find on shopping carts are about the same hardness rating as PRO FLEX.

Obviously, a bicycle tire is going to take a big printer. BigRep is the company that makes the BigRep One which has a large build volume. Even with a wide diameter tip, though, be prepared to wait. One of their case studies is entitled, “Large Architectural Model 3D Printed in Only 11 Days.” Large, in this case, is a 1:50 scale model of a villa. Not tiny, but still.

We’ve looked at other large printers in the past including 3DMonstr, and the Gigimaker. Of course, the latest trend is printers with a practically infinite build volume.

Continue reading “3D Printed Bicycle Tire Not Full of Hot Air”