Flipping A Coin 10,000 Times With A Dedicated Machine

Flipping a coin is often the initial example used to help teach probability and statistics to maths students. Often, there is talk of how, given a fair coin, the probability of landing heads or tails should approach 0.5. Of course, if you want to test this, it pays to have a machine do the hard work for you. [Andrew Consroe] has the rig to do just that.

The build consists largely of 3D printed parts. A large cylindrical shroud is used to keep the coin within the flipping area. A spring-loaded dowel is actuated by a stepper motor spinning a cam, which flips the coin. Once the coin has landed, it is photographed with a webcam. An image processing pipeline then determines whether the coin landed heads or tails. A black spot is used on one side of the coin to aid analysis, as the poor-quality webcam images weren’t good enough to recognise the coin in its standard form. Once the flip has been analysed, a sliding aperture is used to push the coin back towards the flipper for the next cycle.

The machine completes a flip approximately every two seconds, meaning 10,000 flips would take approximately 2.5 days. Unfortunately, due to noise and occasional coin escapes, [Andrew] hasn’t yet been able to achieve his goal. He aims to increase speed significantly before making an all-out attempt.

Coin flips can make for decent random numbers, but if you need better ones, perhaps NIST can help you out. Video after the break.

This Is How The Fonz Would Play MP3s

Here at Hackaday, we love to see old hardware treated with respect. A lovingly restored radio or TV that’s part of our electronic heritage is a joy to behold, and while we understand the desire to stream media from a funky retro case, it really grates when someone throws away the original guts to make room for new electronics.

Luckily, this Seeburg jukebox wall remote repurposing is not one of those projects. [Scott M. Baker] seems to have an appreciation for the finer things, and when he scored this classic piece of Mid-Century Americana, he knew just what to do. These remotes were situated around diners and other hangouts in the 50s and 60s and allowed patrons to cue up some music without ever leaving their seats. They were real money makers back in the day, and companies put a lot of effort into making them robust and reliable.

[Scott]’s first video below shows the teardown of this unit; you can practically smell the old transformer and motor windings. His goal in the second video was to use the remote to control his Raspberry Pi jukebox; he wisely decided to leave everything intact and use the original electromechanically generated pulses to make selections. His analysis led to a nicely executed shield for his Pi which conditions the pulses and imitates coin drops; happily, the coin mechanism still works too, so you can still drop a quarter for a tune.

The remote is working well now, but [Scott] still needs to finish up a few odds and ends to bring this one home. But we love the look and the respect for tradition here, as we did when this juke got a Raspberry Pi upgrade to imitate a missing wall remote.