Testing Cheap DC Breakers And How To Not Start Fires

One characteristic of adding PV solar to homes is a massive increase in high-voltage and high-current DC installations. With this comes a need for suitable breakers, but without the requisite knowledge it can be easy to set up a fire hazard. There is also the issue of online shopping platforms making it easy to get fuses and breakers that may not be quite as capable as they claim, never mind being rated for DC use.

Recently [Will Prowse] had a poke at a range of common purportedly DC-rated breakers from everyone’s favorite US-based seller of tat, to see whether they should be bought or avoided at all cost. Perhaps unsurprisingly the cheap breakers are about as dodgy as you’d imagine. With a hundred plus amps flowing through them they get surprisingly crispy, even if they generally did their job. Minus the few that arrived in a broken condition, of course.

Ultimately [Will] found that the molded case circuit break (MCCB) by one ‘DIHOOL’ performed the best. Compared to the competition, it is much larger and has sizeable terminals that avoid the quaint heat-soaking issues seen with the cheap-and-cheerful rest. At a mere $34 for the 125A-rated version, it’s still a fraction of the cost of a comparable Eaton MCCB, but should upset your insurance company significantly less than the alternatives.

Don’t forget to add in fuses, with [Will] testing a range of cheapo 12V DC fuses, to see which one will prevent fires, and which one cause them. Unsurprisingly, some of them like the Bojack-branded ones ran very hot, making them more of a liability than an asset.

As for what makes DC breakers so different from AC one is that the extinguishing point of a DC arc is much steeper, which means that an AC breaker is likely to fail to extinguish the arc when used for DC applications. This is why a properly rated and ideally certified breaker is essential, and also not really the point where you want to start saving money.

Continue reading “Testing Cheap DC Breakers And How To Not Start Fires”

High Current Measurement Probe For Oscilloscopes

A decent current measurement sensor ought to be an essential part of every hacker’s workbench. One that is capable of measuring DC, as well as low and high frequencies with reasonable accuracy. And bonus credits if it can also withstand high bus voltages – such as those found in mains utility or electric vehicle work. [Undersilicon] couldn’t find one that ticked all the boxes, so he built an ACS730 based AC/DC current probe capable of measuring up to 25 A at frequencies up to 1 MHz.

Allegro Microsystems has a wide offering of current sensor IC’s. The ACS730 features a -3 dB bandwidth of 1 MHz, and -1 dB bandwidth of 500 kHz. Since it is galvanically isolated, it can be used in AC mains applications up to 297 Vrms and for DC up to 420 V. And as he intended to use it as an oscilloscope accessory, the analog output suited the application nicely. A pair of precision op-amps provide the voltage output scaled to 100 mV/A. The board is powered off a 1000 mAh LiPo battery that can run the sensor for about 15 ~ 20 hours. The power supply section consists of a charge circuit for the LiPo, and a split rail dual output power supply converter for the op-amps.

The ACS730 has a 2.5 V output when measured current is zero, and is scaled for 40 mV/A. This gives an output voltage swing from -0.5 V for -50 A to +4.5 V for +50 A. This is where the AD823ARZ dual 16 MHz, Rail-to-Rail FET Input Amplifiers step in. One pair is used to obtain a 2.5 V reference from the 5 V supply, and also to buffer the analog output from the ACS730. The second pair subtracts the 2.5 V offset, and applies a gain of 2.5 to get the 100 mV/A output. Dual power supply for the op-amps comes from a TPS65133 Split-Rail Converter, ±5V, 250mA Dual Output Power Supply. Lastly, LiPo charging is handled by the MCP73831 Single Cell, Li-Ion/Li-Polymer Charge Management Controller.

Initial testing of direct currents has shown fairly accurate performance. But he’s observed some noise when measuring currents below 1 A which requires some debugging to figure out the source. [Undersilicon] has provided the CAD files for both the PCB and 3D printed enclosure, giving you access to everything you need to build one yourself. If you’re looking for something a bit more heavy duty, you might be interested in this +/-50 A, 1.5 MHz sensor encased in concrete.

Why Won’t This Darn Thing Charge?

What is more fun than plugging in your phone and coming back to find your battery on empty? Stepping on a LEGO block with bare feet or arriving hungry at a restaurant after closing probably qualify. [Alex Sidorenko] won’t clean your floors or order you a pizza, but he can help you understand why cheap chargers won’t always power expensive devices. He also shows how to build an adapter to make them work despite themselves.

The cheapest smart device chargers take electricity from your home or car and convert it to five volts of direct current. That voltage sits on the power rails of a USB socket until you plug in a cable. If you’re fortunate, you might get a measly fuse.

Smart device manufacturers don’t make money when you buy an off-brand charger, and they can’t speak to the current protection of them, so they started to add features on their own chargers to protect their components and profit margins. In the case of dedicated chargers, a simple resistor across the data lines tells your phone it is acceptable power. Other devices are more finicky, but [Alex Sidorenko] shows how they work and provides Eagle files to build whatever flavor you want. Just be positive that your power supply is worthy of the reliability these boards promise to the device.

Now you know why connecting a homemade benchtop power supply to a USB cable seems good on paper but doesn’t always get the job done. Always be safe when you make your own power supplies.