3D Printing With Multiple Soluble Filaments

Complex 3D-printed designs often require the use of an automatically generated support structure around them for stability. While this enables some truly incredible results, it adds considerable time and cost to the printing process. Plus there’s the painstaking process of removing all the support material without damaging the object itself. If you’ve got a suitably high-end 3D printer, one solution to this problem is doing the supports in a water soluble filament; just toss the print into a bath and wait for the support to dissolve away.

But what if you’re trying to print something that’s complex and also needs to be soluble? That’s precisely what [Jacob Blitzer] has been experimenting with recently. The trick is finding two filaments that can be printed at the same time but are dissolved with two different solutions. His experimentation has proved it’s possible to do with consumer-level hardware, but it isn’t easy and it’s definitely not cheap.

You might be wondering what the possible application for this technique is. For [Jacob], he wanted to be able to print hollow molds in complex geometric shapes that would ultimately be filled with concrete. The molds required extensive internal supports that would have been all but impossible to remove if they weren’t printed in a soluble filament. But he also wanted to be able to dissolve the mold once the concrete inside had cured. So he needed one easy to dissolve filament for the supports, and a harder to dissolve one for the actual mold.

For the mold itself, [Jacob] went with High Impact Polystyrene (HIPS) which can be dissolved with an industrial degreaser called Limonene. It’s expensive, and rather nasty to work with, but it does an excellent job of eating away the HIPS so that’s one problem solved. Finding a water-soluble filament for the supports that could be printed at similar temperatures to the HIPS took months of research, but eventually he found one called HyroFill that fit the bill. Unfortunately, it costs an eye-watering $175 USD per kilogram.

So you have the filaments, but what can actually print them at the same time? Multi-material 3D printing is a tricky topic, and there’s a few different approaches that have been developed over the years. In the end, [Jacob] opted to go with the FORMBOT T-Rex that uses the old-school method of having two individual hotends and extruders. It’s the simplest method conceptually, but calibrating such a machine is notoriously difficult. Running two exotic and temperamental filaments at the same time certainly doesn’t help matters.

After all the time, money, and effort put into the project (he also had to write the software that would create the 3D models in the first place) [Jacob] says he’s not exactly thrilled with the results. He’s produced some undeniably stunning pieces, but the failure rate is very high. Still, it’s fascinating research that appears to be the first of its kind, so we’re glad that he’s shared it for the benefit of the community and look forward to seeing where it goes from here.

Unlocking Silk For Uses As An Optical, Digital, Biological, Or Food Storage Device

[Fiorenzo Omenetto] gave a TED talk early last year to illustrates a lot of intriguing uses for silk. Before watching his presentation we would have been hard pressed to come up with a use for silk other than in clothing. But it turns out that investigating how silk worms create the material has led to a range of other applications. You can see the full talk embedded after the break.

One of the first things he shows off is a transparent film made of silk. The material looks almost like cellulose film, and can function in a similar way. [Fiorenzo] shines a laser through a silk slide that has a micro-dot of words embedded in it. the result is a clearly readable message projected on the wall. The film can also be used for holographic images.

But it’s the biodegradable aspects that are clearly the breakthrough here. A slide of silk can be doped with pharmaceuticals and programmed for a very specific time release. This way the drugs no longer need to be stored under refrigeration, and can be reclaimed using only water. The same properties allow one to manufacture disposable objects that will quickly and completely degrade. But there’s even more, if you dope the material with a conductor like gold it becomes a disposable circuit.

Continue reading “Unlocking Silk For Uses As An Optical, Digital, Biological, Or Food Storage Device”

Store Your RFID Transit Card Inside Your Cellphone

Check it out, this is a Boston transit pass — or at least the parts of it that matters. [Becky Stern] got rid of the rest in a bid to embed the RFID tag inside her cellphone.

The transit pass, called a CharlieCard, started out as a normal credit card shaped tag which you might use for access in the workplace. She unsheathed the chip and its antennae by giving it a generous soak in acetone. In about thirty minutes the plastic card looks more like paper pulp, and you can gently fish out the electronics. These are now small enough to fit in the back cover of a cellphone much like those inductive charging hacks.

[Becky] put hers in an iPhone. But the idea comes from [Dhani Sutanto] who used the same technique to extract the coil from a London transit pass. He then embedded the hardware in a resin cast ring.

Continue reading “Store Your RFID Transit Card Inside Your Cellphone”