Directional Antenna 3-Way

If you read old antenna books, you’ll probably see the idea of phased vertical antennas. These use certain lengths of coax to control the phase of a signal going to three verticals in a triangular configuration. Depending on the phasing, you can cause the array of antennas to be directional in one of three directions. [DX Commander] designed a very modern version of this antenna and shows the theory behind it in a recent video that you can see below.

It seems another ham built the antenna and a control box for it which he’s sent to [DX Commander] although he hasn’t set it up yet to create an 80 meter directional antenna. We’ll be interested in seeing how it works in practice.

Continue reading “Directional Antenna 3-Way”

Ham Antenna Fits Almost Anywhere

[G3OJV] knows the pain of trying to operate a ham radio transmitter on a small lot. His recent video shows how to put up a workable basic HF antenna in a small backyard. The center of the system is a 49:1 unun. An unun is like a balun, but while a balun goes from balanced line to an unbalanced antenna, the unun has both sides unbalanced. You can see his explanation in the video below.

The tiny hand-size box costs well under $40 or $50 and covers the whole HF band at up to 200 W. The video shows the inside of the box which, as you’d expect, is a toroid with a few turns of wire.

Continue reading “Ham Antenna Fits Almost Anywhere”

Frame Antenna Works The Low Bands

The lower the frequency of radio transmission, the more antenna that will be needed in general. [OM0ET] wanted to work the 80M to 20M ham bands and decided to turn to a frame antenna. You can see the project in the video below.

The antenna looks a lot like a magnetic loop antenna. The one in the video has seven loops forming a 520mm square. The loop is, of course, an inductor and by removing some insulation, the operator can clip a lead at different points to control the inductance. A variable capacitor resonates the antenna, so there is definitely tuning required.

Continue reading “Frame Antenna Works The Low Bands”

Ham Radio SSB Transceiver Fits In Pocket

Talking about this Chinese ham radio transceiver requires a veritable flurry of acronyms: HF, SSB, QRP, and SDR to start with. [Paul] does a nice job of unboxing the rig and checking it out. The radio is a clone of a German project and provides a low-power radio with a rechargeable battery. You can see his video about the gear below.

SSB is an odd choice for low power operation, although we wonder if you couldn’t feed digital data in using a mode like PSK31 that has good performance at low power. There are several variations of the radio available and they cost generally less than $200 — sometimes quite a bit less.

There isn’t much on the front of the radio. There are a few buttons, a rotary encoder, and an LCD along with a speaker and microphone built-in. There are ports for power to run the radio if you want to not use the battery and a separate port for battery charging. There are also ports for a key, external microphone and speakers, and audio connections that look like they’d work for digital modes. According to commenters, the radio doesn’t have an internal charging circuit, so you have to be careful what you plug into the charging port.

Looking inside, the radio looks surprisingly well made. Towards the end of the video, you can see the radio make some contacts, too. Looks like fun. This is a bit pricey for [Dan Maloney’s] $50 Ham series, but not by much. You might borrow an antenna idea from him, at least. If you prefer something more analog, grab seven transistors and build this SSB transceiver.

Continue reading “Ham Radio SSB Transceiver Fits In Pocket”

Four Band Digital HF SDR Transceiver Offers High Performance For Only $60

Amateur radio is a hobby that is often thought of as being exclusive to those with a healthy expendable income. In recent years however, the tides have turned. Cheap microcontrollers and signal generators have helped turned things around, and the $60 USD QDX from QRP Labs goes even further by sending the performance/price ratio through the roof. You can see more details in the video below the break.

The QDX is the creation of [Hans Summers] who is well known for producing affordable high performance amateur radio kits that are focused on low power transmission, called “QRP” in ham radio parlance. What is it? It’s a pocket sized four band (80, 40, 30, 20 Meters) software defined radio (SDR) that is designed to be used with some of the most popular digital radio modes: FT8 and JS8Call, as well as any other FSK based mode such as RTTY. It’s also been tested to work well (and within spec) on 60 Meters.

While classic radios have to be connected to a computer through a special hardware interface, the QDX is designed to connect directly to a computer through a standard USB A>B cable. CAT control, PTT, and Audio are all handled directly by the QDX, and no special interface is needed. While the radio is essentially plug and play, configuration, testing, and troubleshooting can be done by connecting to the QDX’s unique serial console, which among other things contains a text based waterfall. For those who want to run their own SDR receiver, I/Q output can be sent directly through the sound card.

Now for the bad news: due to global chip shortages, the QDX is out of stock at the moment, and there’s no telling when they might start shipping again. QRP Labs is looking to source parts wherever they can to get more of the units made, but of course, so is everyone else right now. Continue reading “Four Band Digital HF SDR Transceiver Offers High Performance For Only $60”

This Ham Radio Is Unsafe At Any Frequency

When we were kids we rode bicycles without pads and helmets. We drank sugary drinks. We played with chemistry sets and power tools. We also built things that directly used AC line current. [Mike] remembers and built one, presumably more to discuss the safety precautions around things that can shock you and not entice you to duplicate it. He calls it The Retro QRP Widowmaker, if that’s any kind of a hint. (Video of this unsafe transmitter also embedded below.)

The design showed up from time to time in old electronic magazines. Built on an open board and with no ground wire, the radio didn’t need a complex power supply. This wasn’t limited to transmitters, either. Some TVs and radios had a “hot chassis.” That’s why we were taught to touch an unknown chassis with the back of your hand first. A shock will contract your muscles and that will pull your arm away instead of making you grab the electrically active part.

Continue reading “This Ham Radio Is Unsafe At Any Frequency”

Ham Radio Gets Brain Transplant

Old radios didn’t have much in the way of smarts. But as digital synthesis became more common, radios often had as much digital electronics in them as RF circuits. The problem is that digital electronics get better and better every year, so what looked like high-tech one year is quaint the next. [IMSAI Guy] had an Icom IC-245 and decided to replace the digital electronics inside with — among other things — an Arduino.

He spends a good bit of the first part of the video that you can see below explaining what the design needs to do. An Arduino Nano fits and he uses a few additional parts to get shift registers, a 0-1V digital to analog converter, and an interface to an OLED display.

Unless you have this exact radio, you probably won’t be able to directly apply this project. Still, it is great to look over someone’s shoulder while they design something like this, especially when they explain their reasoning as they go.

The PCB, of course, has to be exactly the same size as the board it replaces, including mounting holes and interface connectors. It looks like he got it right the first time which isn’t always easy. Does it work? We don’t know by the end of the first video. You’ll have to watch the next one (also below) where he actually populates the PCB and tests everything out.

Continue reading “Ham Radio Gets Brain Transplant”