You Didn’t See Graphite Around This Geiger Counter

Even if you don’t work in a nuclear power plant, you might still want to use a Geiger counter simply out of curiosity. It turns out that there are a lot of things around which emit ionizing radiation naturally, for example granite, the sun, or bananas. If you’ve ever wondered about any of these objects, or just the space you live in, it turns out that putting together a simple Geiger counter is pretty straightforward as [Alex] shows us.

The core of the Geiger counter is the tube that detects the radiation. That’s not something you’ll be able to make on your own (probably) but once you have it the rest of the build comes together quickly. A few circuit boards to provide the tube with the high voltage it needs, a power source, and a 3D printed case make this Geiger counter look like it was ordered from a Fluke catalog.

The project isn’t quite finished ([Alex] is still waiting on a BNC connector to arrive) but seems to work great and isn’t too complicated to put together, as far as Geiger counters go. He did use a lathe for some parts which not everyone will have on hand, but a quick trip to a makerspace or machinist will get you that part too. We’ve seen some other parts bin Geiger counters too, so there’s always a way around things like this.

Hold 3500 Volts Up To Your Eye

Old military equipment can sometimes be found in places like flea markets and eBay for pennies, often because people don’t always know what they have. While [tsbrownie] knew exactly what he was getting when he ordered this mystery device, we’re not sure we could say the same thing if we stumbled upon it ourselves. What looks like a vacuum tube of some sort turns out to be an infrared sensor from an old submarine periscope that was repurposed as a night vision device. (Video, embedded below.)

Of course, getting a tube like this to work requires high voltage. This one specifically needs 3500V in order to work properly, but this was taken care of with a small circuit housed in a PVC-like enclosure. The enclosure houses the tube in the center, with an eye piece at one end and a camera lens at the other, attached presumably by a 3D-printed mount. The electronics are housed in the “grip” and the whole thing looks like a small sightglass with a handle. Once powered up, the device is able to show a classic green night vision scene.

Old analog equipment like this is pretty rare, as are people with the expertise to find these devices and get them working again in some capacity. This is a great video for anyone with an interest in tubes, old military gear, or even if you already built a more modern night vision system a while back.

Thanks to [Zzp100] for the tip!

Continue reading “Hold 3500 Volts Up To Your Eye”

A Tube Theremin, Just Like Grandpa Leon Used To Make

Next year we’re arguably coming up on the centennial of electronic music, depending on whether you count the invention or the patent for the theremin its creation. Either way, this observation is early, so start arguing about it now. If you want to celebrate the century of the theremin, how about you do it just like grandpa Leon and build one out of tubes? That’s what this crowdfunding campaign is all about. It’s a theremin, and it’s made out of tubes.

Theremins are a dime a dozen around these parts, and yes, if you walk into a Guitar Center you can walk out the door with one. They’re pretty common. But being almost a hundred years old, the first theremin wasn’t made made with only silicon, this one had some dioxide thrown in. The first theremin was a tube device, which we all know has a warmer sound when connected to oxygen free cables in an oxygen free room. In any event, messing around with tubes is fun, so here’s a tube theremin.

The circuit for this theremin is constructed around two EF95 tubes and two ECF80 tubes with a heater voltage of 12 V, with 40 V used as the the rest of the circuitry. Unlike virtually every other crowdfunding campaign we’ve ever seen, there are pages of documentation, written down in text, with actual words, and no ominous clapping ukulele glockenspiel hipster music. It’s in German (Google Translatrix with the save) but we’ll take what we can get. It’s really great to see the development of this theremin, and now we’re wondering where we too can get a breadboard that’s just a piece of copper being used as a ground plane.

This SDR Uses A Tube

When you think of a software defined radio (SDR) setup, maybe you imagine an IC or two, maybe feeding a computer. You probably don’t think of a vacuum tube. [Mirko Pavleski] built a one-tube shortwave SDR using some instructions from [Burkhard Kainka] which are in German, but Google Translate is good enough if you want to duplicate his feat. You can see a video of [Mirko’s] creation, below.

The build was an experiment to see if a tube receiver could be stable enough to receive digital shortwave radio broadcasts. To avoid AC line hum, the radio is battery operated and while the original uses an EL95 tube, [Mirko] used an EF80.

Continue reading “This SDR Uses A Tube”

EF50: The Tube That Changed Everything

From today’s perspective, vacuum tubes are pretty low tech. But for a while they were the pinnacle of high tech, and heavy research followed the promise shown by early vacuum tubes in transmission and computing. Indeed, as time progressed, tubes became very sophisticated and difficult to manufacture. After all, they were as ubiquitous as ICs are today, so it is hardly surprising that they got a lot of R&D.

Prior to 1938, for example, tubes were built as if they were light bulbs. As the demands on them grew more sophisticated, the traditional light bulb design wasn’t sufficient. For one, the wire leads’ parasitic inductance and capacitance would limit the use of the tube in high-frequency applications. Even the time it took electrons to get from one part of the tube to another was a bottleneck.

There were several attempts to speed tubes up, including RCA’s acorn tubes, lighthouse tubes, and Telefunken’s Stahlröhre designs. These generally tried to keep leads short and tubes small. The Philips company started attacking the problem in 1934 because they were anticipating demand for television receivers that would operate at higher frequencies.

Dr. Hans Jonker was the primary developer of the proposed solution and published his design in an internal technical note describing an all-glass tube that was easier to manufacture than other solutions. Now all they needed was an actual application. While they initially thought the killer app would be television, the E50 would end up helping the Allies win the war.

Continue reading “EF50: The Tube That Changed Everything”

How To Make A Pilotron, The Forgotten Tube

The vacuum tube is largely ignored in modern electronic design, save for a few audio applications such as guitar and headphone amps. The transistor is smaller, cheaper, and inordinately easier to manufacture. By comparison, showing us just how much goes into the manufacture of a tube, [glasslinger] decided to make a wire-element pilotron – from scratch!

To say this is an involved build is an understatement. Simply creating the glass tube itself takes significant time and skill. [glasslinger] shows off the skills of a master, however – steadily working through the initial construction, before showing off advanced techniques necessary to seal in electrodes, produce the delicate wire grid, and finally pull vacuum and seal the tube completely.

The project video is an hour long, and no detail is skipped. From 2% thoriated tungsten wire to annealing torches and grades of glass, it’s all there. It’s enough that an amateur could reproduce the results, given enough attempts and a complete shop of glassworking equipment.

The pilotron may be a forgotten design, but in 2018 it once again gets its day in the sun. Overall, it’s a testament to [glasslinger]’s skill and ability to be able to produce such a device that not only looks the part, but is fully functional on an electronic level, as well.

There’s a few people out there still building valves the old fashioned way, and we’d love to see more – tip ’em if you got ’em. Video after the break.

[Thanks to Morris for the tip!]

Continue reading “How To Make A Pilotron, The Forgotten Tube”

Laser Noob: Getting Started With The K40 Laser

Why spend thousands on a laser cutter/engraver when you can spend as little as $350 shipped to your door? Sure it’s not as nice as those fancy domestic machines, but the plucky K40 is the little laser that can. Just head on down to Al’s Laser Emporium and pick one up.  Yes, it sounds like a used car dealership ad, but how far is it from the truth? Read on to find out!

Laser cutting and engraving machines have been around for decades. Much like 3D printers, they were originally impossibly expensive for someone working at home. The closest you could get to a hobbyist laser was Epilog laser, which would still cost somewhere between $10,000 and $20,000 for a small laser system. A few companies made a go with the Epilog and did quite well – notably Adafruit used to offer laptop laser engraving services.

Over the last decade or so things have changed. China got involved, and suddenly there were cheap lasers on the market. Currently, there are several low-cost laser models available in various power levels. The most popular is the smallest – a 40-watt model, dubbed the K40. There are numerous manufacturers and there have been many versions over the years. They all look about the same though: A blue sheet metal box with the laser tube mounted along the back. The cutting compartment is on the left and the electronics are on the right. Earlier versions came with Moshidraw software and a parallel interface.

Continue reading “Laser Noob: Getting Started With The K40 Laser”