We are unabashed fans of [The History Guy’s] YouTube channel, although his history videos aren’t always about technology, and even when they are, they don’t always dig into the depths that we’d like to see. That’s understandable since the channel is a general interest channel. However, for this piece on James Clerk Maxwell, he brought in [Arvin Ash] to handle the science side. While [The History Guy] talked about Maxwell’s life and contributions, [Arvin] has a complementary video covering the math behind the equations. You can see both videos below.
Of course, if you’ve done electronics for long, you probably know at least something about Maxwell’s equations. They unified electricity and magnetism and Einstein credited them with spurring one of his most famous theories.
If you haven’t noticed, this is an absolutely fantastic time to be a hacker. The components are cheap, the software is usually free, and there’s so much information floating around online about how to pull it all together that even beginners can produce incredible projects their first time out of the gate. It’s no exaggeration to say that we’re seeing projects today which would have been all but impossible for an individual to pull off ten years ago.
But how did we get here, and perhaps more importantly, where are we going next? While we might arguably be in the Golden Age of DIY, creative folks putting together their own hardware and software is certainly nothing new. As for looking ahead, the hacker and maker movement is showing no signs of slowing down. If anything, we’re just getting started. With a wider array of ever more powerful tools at our disposal, the future is very literally whatever we decide it is.
In her talk at the 2019 Hackaday Superconference, “The Future is Us: Why the Open Source And Hobbyist Community Drive Consumer Products“, Jen Costillo not only presents us with an overview of hacker history thus far, but throws out a few predictions for how the DIY movement will impact the mainstream going forward. It’s always hard to see subtle changes over time, and it’s made even more difficult by the fact that most of us have our noses to the proverbial grindstone most of the time. Her presentation is an excellent way for those of us in the hacking community to take a big step back and look at the paradigm shifts that put such incredible power in the hands of so many.
If you ask most people who invented the mouse, they won’t know. Those that do know, will say that Doug Englebart did. In 1964 he had a box with two wheels that worked like a modern mouse as part of his work at Stanford Research Institute. There is a famous demo video from 1968 of him showing off what looks a lot like an old Mcintosh computer. Turns out, two other people may have an earlier claim to a mouse — or, at least, a trackball. So why did you never hear about those?
The UK Mouse
Ralph Benjamin worked for Britain’s Royal Navy, developing radar tracking systems for warships. Right after World War II, Ralph was working on the Comprehensive Display System — a way for ships to monitor attacking aircraft on a grid. They used a “ball tracker.” Unlike Engelbart’s mouse, it used a metallic ball riding on rubber-coated wheels. This is more like a modern non-optical mouse, although the ball tracker had you slide your hand across the ball instead of the other way around. Sort of a trackball arrangement.
One of the first things you learn in electronics is how to identify a resistor’s value. Through-hole resistors have color codes, and that’s generally where beginners begin. But why are they marked like this? Like red stop signs and yellow lines down the middle of the road, it just seems like it has always been that way when, in fact, it hasn’t.
Before the 1920s, components were marked any old way the manufacturer felt like marking them. Then in 1924, 50 radio manufacturers in Chicago formed a trade group. The idea was to share patents among the members. Almost immediately the name changed from “Associated Radio Manufacturers” to the “Radio Manufacturer’s Association” or RMA. There would be several more name changes over the years until finally, it became the EIA or the Electronic Industries Alliance. The EIA doesn’t actually exist anymore. It exploded into several specific divisions, but that’s another story.
This is the tale of how color bands made their way onto every through-hole resistor from every manufacturer in the world.
When Isaac Asmiov was writing I, Robot, the field of robotics was still in its infancy. As he notes in The Complete Robot, as the field began to mature, it started showing signs of conforming to the popular ideas held by science fiction writers about what robotics ought to be. Notions of humanoid robots, the functions that robots would have in domestic settings, even the ethical quandaries that AI ethicists face today were all themes of early sci-fi writers.
The idea of a robot – at least of automata – predates the field of robotics. The idea of an independent automata may have existed as early as the ancient Egyptians Chinese, and Greeks, who attempted to build self-operated machines that resembled animals and humans. Myths of clay golems in Jewish legends and clay giants in Norse legends perpetuated the idea of an artificial being that could mimic the actions of living creatures. A 400 BC myth from Crete spoke of a man of bronze who guarded their island from pirates.
Bacon and eggs, chocolate and peanut butter, salt and pepper; some things just go together. You’d think that a mashup of an airplane and a helicopter would be great, right? The Fairey Rotodyne was just such a thing from the late 1950s and while it looked to be the wave of the future, it never took off — at least, not in the business sense at least. [Mustard] has an excellent video about the machine including some flight footage and explains why it failed to take over the aviation market. You can watch the video below.
While it does look like a helicopter mated with an airplane, it’s actually a bit different. The rotor isn’t normally powered at all. However, it does turn in forward flight and generates about half the lift the plane needs. That explains the stubby wings. The topside rotor has small jets at the tips that can be used during vertical take off, landing, and hovering modes.
For its time, it was fast and efficient, especially compared to contemporary helicopters. This type of plane was known as an autogyro and actually appeared in the 1930s as a safety mechanism since an autogyro can land in an autorotation mode.
According to the video, the noisy tip jets and production delays killed the beast. There was only one prototype built, but there was something we found very attractive about it. There have been, of course, other autogyros. British, German, Japanese, and Russian military have used autogyros at one time or another. The United States Postal Service was known to employ at least one.
Even today, there are about a thousand autogyros used by different military and police organizations. They are cheaper than a helicopter to buy and fly. Sadly, though, it doesn’t look like autogyros will ever become a common sight. Like an airship, they seem like a callback to an earlier time when you have a chance to spot one.
The Boeing B-17 “Flying Fortress” is arguably the most recognizable aircraft of the Second World War. Made infamous by the daring daylight strategic bombing runs they carried out over Germany, more than 12,000 of these four-engined bombers were produced between 1939 and 1945. Thanks to the plane’s renowned survivability in battle, approximately 60% of them made it through the war and returned home to the United States, only to be rounded up in so-called “boneyards” where they were ultimately cut up and sold as scrap. Today there are fewer than 50 intact Boeing B-17s left in the world, and of those, only 11 remain airworthy.
One of them is Nine-O-Nine, a B-17G built in April 7, 1945. This particular aircraft was built too late to see any combat, although in the 1950s she was fitted with various instruments and exposed to three separate nuclear blasts for research purposes. It’s actually not the real Nine-O-Nine either, the original was scrapped after it completed eighteen bombing runs over Berlin. Without a combat record of its own, this bomber was painted to look like the real Nine-O-Nine in honor of its incredible service record of never losing a crewman.
Since 1986, Nine-O-Nine has been owned by the Collings Foundation, who operate her as a living history exhibit. The bomber flies around the United States with an entourage of similarly iconic WWII aircraft as part of the Wings of Freedom Tour, stopping by various airports and giving the public a chance to climb aboard and see the pinnacle of mid-1940s strategic bombing technology. History buffs with suitably deep pockets can even book a seat on one of the scheduled 30-minute flights that take place at every stop on the Tour.
I was lucky enough to have the The Wings of Freedom Tour pass through my area recently, and couldn’t pass up the opportunity to experience this incredible aircraft first hand. The fact that I’m equal parts a coward and miser kept me from taking a ride aboard the 74 year old Nine-O-Nine, at least for now, but I made sure to take plenty of pictures from inside this lovingly restored B-17G while it was safely on the ground.