The Punched Card Detective

[John Graham-Cumming] might not be the first person to thumb through an old book and find an IBM punched card inside. But he might be the first to actually track down the origin of the cards. Admittedly, there were clues. The book was a Portuguese book about computers from the 1970s. The cards also had a custom logo on them that belonged to a computer school at the time.

A Hackaday card, thanks to the online card punch

It is hard to remember, but there was a time when cards reigned supreme. Sometimes called Hollerith cards after  Herman Hollerith, who introduced the cards to data processing, these cards used square holes to encode information. Reading a card is simple. There are 80 columns on a classic card. If a column has a single punch over a number, then that’s what that column represents. So if you had a card with a punch over the “1” followed by a punched out “5” in the next column and a “0” in the column after that, you were looking at 150. No punches, of course, was a space.

So, how did you get characters? The two blank regions above the numbers are the X and Y zones (or, sometimes, the 11 and 12 zones). The “0” row was also sometimes used as a zone punch. To interpret a column, you needed to know if you expected numbers or letters. An 11-punch with a digit indicated a negative number if you were expecting a number. But it could also mean a particular letter of the alphabet combined with one or more punches in the same column.

Continue reading “The Punched Card Detective”

Punch Card Reader For The 10 Types Of People In The World

Punch card data input is so 1890 US Census, right? Maybe not, if your goal is to educate kids about binary numbers and how they can encode characters. In which case, this paper clip and metal tape punch card reader might be just the thing you need.

Built as part of the educational outreach efforts of the MakeICT hackerspace, this project allows kids and adults to play with binary numbers and get some instant feedback. The reader itself is a simple affair of wood and plastic; bent paperclips make contact with a foil tape strip and LEDs show the state of the five input bits. A card is provided to students with spaces for the letters of a word that they want to input, along with a table to translate each letter into a number. Students use a paper punch to encode each character in binary. As the card is pulled through the reader, the letters are spoken by the Pi in turn and the whole word is pronounced at the end.

We’ll no doubt hear quibbles with the decision not to use ASCII for the character set, but we can see the logic in keeping the number of bits to a minimum and not distracting from the learning process. What’s cool about this is that it engages kids on so many levels. They learn about binary numbers, encoding systems, interfacing a computer to the real world, and if they care to delve deeper, they can learn about the code behind everything. It’s a great hook into the hacking arts.

And once the kids learn a thing or two, maybe they can use this punch-card Twitter interface to tweet their new-found knowledge.


Raspberry_Pi_LogoSmall

The Raspberry Pi Zero contest is presented by Hackaday and Adafruit. Prizes include Raspberry Pi Zeros from Adafruit and gift cards to The Hackaday Store!
See All the Entries || Enter Your Project Now!