Hot Glue Appendages May Be Predecessor To The Flow Metal Of The T-1000

The T-1000 was the shape-shifting robot from T2 (the second Terminator movie). It was so amazing because it could assume the form and texture of anything; humans, piercing weapons, inanimate objects. This robot doesn’t even compare, except for one small trait. When it needs a tool, it can build it as its own appendage. This really is nothing more than making tools with a 3D printer. However, the normal boxy infrastructure is missing.

The print head is mounted on a single robot arm, and the tool is printed using hot melt glue in order to stick to a plate which makes up the business end of robot arm. In this case the robot needed to transport some water. It sets down the plate, uses the hot melt extruder to print a cup on that plate, then picks it up again and uses it to move water from one bowl to the other. You can see it all in the video clip below the fold.

Sure, it’s just baby steps. But hot melt glue sticks are light weight, and don’t require much energy to melt. This makes for a perfect combination as a portable tool shop.

Continue reading “Hot Glue Appendages May Be Predecessor To The Flow Metal Of The T-1000”

Flux Paste Applicator Gun

[Luciano] didn’t want to drop a lot of cash into a flux and solder paste applicator so he built his own for about $5. He re-purposed a hot glue gun which you can usually find at a dollar store. After removing the heating element he inserted the body of a syringe. The plunger has been modified to use a knitting needle inside of some plastic tubing. After taking the picture above he made an improvement by adding a milliliter scale to the plunger, allowing you to meter out the paste and also gauge how much remains.

Polycarbonate Fish Uses Three Servos To Swim

polycarbonate-fish

[Amnon] is learning the hard way that water and electronics don’t always like to play nicely together. He’s been working on creating a swimming fish that uses three servos to flex a sheet of fish-shaped polycarbonate. This photo doesn’t really do the project justice but you can get a better idea of what he’s accomplished by watching the videos after the break.

The three servos along with some distance sensors for obstacle avoidance are all controlled by a PIC 16F877A microcontroller. [Amnon] tried out three different waterproofing methods; coating the device in varnish, dipping it in hot glue, and dipping it in epoxy. The first two resulted in water damage to the electronics, but the third managed to work. It kept the water out, but also prevents reprogramming of the controller.

Although not successful, we would have loved to see the process of dipping the fish in a churning vat of molten glue. Once perfected, this may be the perfect platform for carrying our weapons of doom.

Continue reading “Polycarbonate Fish Uses Three Servos To Swim”