Behold A Microscope That Sees By Squashing Things Into It

“Look with your eyes, not your hands” is something many of us have heard while growing up, but that doesn’t apply to the touch-sensitive microscope [Steve Mould] got to play with.

Gel pad removed, exposing lens and multi-directional lighting.

The wand-like device is made by Gelsight, and instead of an optical lens like a normal microscope, it sports a gel pad on the sensing end. By squashing an object into the gel, the device is able to carefully illuminate and image the impression created. By taking multiple images lit from different angles, a lot of information can be extracted.

The result is a high-resolution magnification — albeit a monochromatic one — that conveys depth extremely well. It’s pretty neat clearly seeing tiny specks of dust or lint present on surfaces when [Steve] demonstrates imaging things like coin cells.

Many a hacker knows that the devil is in the details when it comes to executing an idea. Even so, the basic principles of the Gelsight seem simple enough and possibly within the realm of inspired DIY in the same way that we saw a CNC gantry and USB microscope repurposed as an optical comparator.

Watch the Gelsight in action in the video below, embedded below the page break.

Continue reading “Behold A Microscope That Sees By Squashing Things Into It”

Cellerator Wants To Be Your Automated Desktop Biotech Lab

Cellerator really had us at “make designer beers”, but of course this multi-purpose biotech lab has a lot more to offer. It seeks to lower the cost and complexity barriers for automating useful scientific equipment, and wants to pave the way for more innovation in material science based.

The approach taken by Cellerator is to take existing lab tools and automate common research tasks using components familiar to anyone who’s used a 3D printer. A gantry system with end effectors designed for different tools like pipettes automate the processing of samples. A camera (with or without microscope) can be used for feedback via computer vision, or simply by logging snapshots.

A number of screenshots from the software show the depth of the plans for the system. They include widgets for telling the system where various fixtures such as the hot plate, centrifuge, and bioreactor are located. Sub menus for each tool set parameters for their operation, with a scheduling and instruction system for customizing each experiment as well as recording all of the data along the way.