Custom Drone Software Searches, Rescues

When a new technology first arrives in people’s hands, it often takes a bit of time before the full capabilities of that technology are realized. In much the same way that many early Internet users simply used it to replace snail mail, or early smartphones were used as more convenient methods for messaging and calling than their flip-phone cousins, autonomous drones also took a little bit of time before their capabilities became fully realized. While some initially used them as a drop-in replacement for things like aerial photography, a group of mountain rescue volunteers in the United Kingdom realized that they could be put to work in more efficient ways suited to their unique abilities and have been behind a bit of a revolution in the search-and-rescue community.

The first search-and-rescue groups using drones to help in their efforts generally used them to search in the same way a helicopter would have been used in the past, only with less expense. But the effort involved is still the same; a human still needed to do the searching themselves. The group in the UK devised an improved system to take the human effort out of the equation by sending a drone to fly autonomously over piece of mountainous terrain and take images of the ground in such a way that any one thing would be present in many individual images. From there, the drone would fly back to its base station where an operator could download the images and run them through a computer program which would analyse the images and look for outliers in the colors of the individual pixels. Generally, humans tend to stand out against their backgrounds in ways that computers are good at spotting while humans themselves might not notice at all, and in the group’s first efforts to locate a missing person they were able to locate them almost immediately using this technology.

Although the system is built on a mapping system somewhat unique to the UK, the group has not attempted to commercialize the system. MR Maps, the software underpinning this new feature, has been free to use for anyone who wants to use it. And for those just starting out in this field, it’s also worth pointing out that location services offered by modern technologies in rugged terrain like this can often be misleading, and won’t be as straightforward of a solution to the problem as one might think.

Measuring Trees Via Satellite Actually Takes A Great Deal Of Field Work

Figuring out what the Earth’s climate is going to do at any given point is a difficult task. To know how it will react to given events, you need to know what you’re working with. This requires an accurate model of everything from ocean currents to atmospheric heat absorption and the chemical and literal behavior of everything from cattle to humans to trees.

In the latter regard, scientists need to know how many trees we have to properly model the climate. This is key, as trees play a major role in the carbon cycle by turning carbon dioxide into oxygen plus wood. But how do you count trees at a continental scale? You’ll probably want to get yourself a nice satellite to do the job.

Continue reading “Measuring Trees Via Satellite Actually Takes A Great Deal Of Field Work”

Blood Pressure Monitor For Under $1

Medical equipment is not generally known for being inexpensive, with various imaging systems usually weighing in at over a million dollars, and even relatively simpler pieces of technology like digital thermometers, stethoscopes, and pulse oximeters coming in somewhere around $50. As the general pace of technological improvement continues on we expect marginal decreases in costs, but every now and then a revolutionary piece of technology will drop the cost of something like a blood pressure monitor by over an order of magnitude.

Typically a blood pressure monitor involves a cuff that pressurizes against a patient’s arm, and measures the physical pressure of the blood as the heart forces blood through the area restricted by the cuff. But there are some ways to measure blood pressure by proxy, instead of directly. This device, a small piece of plastic with a cost of less than a dollar, attaches to a smartphone near the camera sensor and flashlight. By pressing a finger onto the device, the smartphone uses the flashlight and the camera in tandem to measure subtle changes in the skin, which can be processed in an app to approximate blood pressure.

The developers of this technology note that it’s not a one-to-one substitute for a traditional blood pressure monitor, but it is extremely helpful for those who might not be able to afford a normal monitor and who might otherwise go undiagnosed for high blood pressure. Almost half of adults in the US alone have issues relating to blood pressure, so just getting information at all is the hurdle this device is attempting to overcome. And, we’ll count it as a win any time medical technology becomes more accessible, more inexpensive, or more open-source.

IR Camera Is Excellent Hacking Platform

While there have been hiccups here and there, the general trend of electronics is to decrease in cost or increase in performance. This can be seen in fairly obvious ways like more powerful and affordable computers but it also often means that more powerful software can be used in other devices without needing expensive hardware to support it. [Manawyrm] and [Toble_Miner] found this was true of a particular inexpensive thermal camera that ships with Linux installed on it, and found that this platform was nearly perfect for tinkering with and adding plenty of other features to turn it into a much more capable tool.

The duo have been working on a SC240N variant of the InfiRay C200 infrared camera, which ships with a Hisilicon SoC. The display is capable of displaying 25 frames per second, making this platform an excellent candidate for modifying. A few ports were added to the device, including USB and MicroSD, and which also allows the internal serial port to be accessed easily. From there the device can be equipped with the uboot bootloader in order to run essentially anything that could be found on any other Linux machine such as supporting a webcam interface (and including a port of DOOM, of course). The duo doesn’t stop at software modifications though. They also equipped the camera with a lens, attached magnetically, which changes the camera’s focal length to give it improved imaging capabilities at closer ranges.

While the internal machinations of this device are interesting, it actually turns out to be a fairly capable infrared camera on its own as well. The hardware and software requirements for these devices certainly don’t need a full Linux environment to work, and while we have seen thermal cameras that easily fit in a pocket that are based on nothing any more powerful than an ESP32, it does tend to simplify the development process dramatically to include Linux and a little more processing power if you can.

Continue reading “IR Camera Is Excellent Hacking Platform”

Creating A 3D Visualization Of Freely Moving Organisms Using Camera Array And Software Algorithm

Observing a colony, swarm or similar grouping of creatures like ants or zebrafish over longer periods of time can be tricky. Simply recording their behavior with a camera misses a lot of information about the position of their body parts, while taking precise measurements using a laser-based system or LiDAR suffers from a reduction in parameters such as the resolution or the update speed. The ideal monitoring system would be able to record at high data rates and resolutions, while presenting the recorded data all three dimensions. This is where the work by Kevin C. Zhou and colleagues seeks to tick all the boxes, with a recent paper (preprint, open access) in Nature Photonics describing their 3D-RAPID system.

This system features a 9×6 camera grid, making for a total of 54 cameras which image the underlying surface. With 66% overlap between cameras across the horizontal dimension, there enough duplicate data between image stream that is subsequently used in the processing step to extract and reconstruct the 3D features, also helped by the pixel pitch of between 9.6 to 38.4 µm. The software is made available via the author’s GitHub.

Three configurations for the imaging are possible, ranging from no downsampling (1x) for 13,000×11,250 resolution at 15 FPS, to 2x downsampling (6,500×5,625@60FPS) and finally 4x (3,250×2,810@230FPS). Depending on whether the goal is to image finer features or rapid movement, this gives a range of options before the data is fed into the computational 3D reconstruction and stitching algorithm. This uses the overlap between the distinct frames to reconstruct the 3D image, which in this paper is used together with a convolutional neural network (CNN) to automatically determine for example how often the zebrafish are near the surface, as well as the behavior of fruit flies and harvester ants.

As noted in an interview with the authors, possible applications could be found in developmental biology as well as pharmaceutics.

Pocket-Sized Thermal Imager

Just as the gold standard for multimeters and other instrumentation likely comes in a yellow package of some sort, there is a similar household name for thermal imaging. But, if they’re known for anything other than the highest quality thermal cameras, it’s excessively high price. There are other options around but if you want to make sure that the finished product has some sort of quality control you might want to consider building your own thermal imaging device like [Ruslan] has done here.

The pocket-sized thermal camera is built around a MLX90640 sensor from Melexis which can be obtained on its own, but can also be paired with an STM32F446 board with a USB connection in order to easily connect it to a computer. For that, [Ruslan] paired it with an ESP32 board with a companion screen, so that the entire package could be assembled together with a battery and still maintain its sleek shape. The data coming from the thermal imagining sensor does need some post-processing in order to display useful images, but this is well within the capabilities of the STM32 and ESP32.

With an operating time on battery of over eight hours and a weight under 100 grams, this could be just the thing for someone looking for a thermal camera who doesn’t want to give up an arm and a leg to one of the industry giants. If you’re looking for something even simpler, we’ve seen a thermal camera based on a Raspberry Pi that delivers its images over the network instead of on its own screen.

Behold A Microscope That Sees By Squashing Things Into It

“Look with your eyes, not your hands” is something many of us have heard while growing up, but that doesn’t apply to the touch-sensitive microscope [Steve Mould] got to play with.

Gel pad removed, exposing lens and multi-directional lighting.

The wand-like device is made by Gelsight, and instead of an optical lens like a normal microscope, it sports a gel pad on the sensing end. By squashing an object into the gel, the device is able to carefully illuminate and image the impression created. By taking multiple images lit from different angles, a lot of information can be extracted.

The result is a high-resolution magnification — albeit a monochromatic one — that conveys depth extremely well. It’s pretty neat clearly seeing tiny specks of dust or lint present on surfaces when [Steve] demonstrates imaging things like coin cells.

Many a hacker knows that the devil is in the details when it comes to executing an idea. Even so, the basic principles of the Gelsight seem simple enough and possibly within the realm of inspired DIY in the same way that we saw a CNC gantry and USB microscope repurposed as an optical comparator.

Watch the Gelsight in action in the video below, embedded below the page break.

Continue reading “Behold A Microscope That Sees By Squashing Things Into It”