Automatic Deploying Lightning Rod

As hackers, hams, and builders of all sorts of things that go in our yards or are attached to our houses we often encounter resistance from building associations and by-laws regarding what to us are harmless necessities but to others are risks to their sight-lines, property values, or are seen as safety hazards. A student at the Bergen County Academies Mechatronics Research Lab has identified this same issue with lightning rods for homes, monuments, and buildings of fine architecture; people don’t want to add unsightly lightning rods despite their proven protections. Her solution? Detect when a storm is approaching and automatically deploy the lightning rod for the duration of the storm.

To detect the approaching storm she’s monitoring the changing barometric pressure using an Adafruit BMP085 barometric pressure, temperature and altitude sensor (now replaced by the BME280) connected to an Arduino with a motor shield. If the pressure is low and the trend has been decreasing then she pivots the lightning rod up using a motor salvaged from a satellite dish. When the risk abates, she pivots the rod back down again. Admittedly the lightning rod has yet to be attached and care will have to be taken with how the discharge cable is deployed but it’s a start. You can see it in action in the video below.

Continue reading “Automatic Deploying Lightning Rod”

Early Electromechanical Circuits

In the days before semiconductor diodes, transistors, or even vacuum tubes, mechanical means were used for doing many of the same things. But there’s still plenty of fun to be had in using those mechanical means today, as [Manuel] did recently with his relay computer. This post is a walk through some circuits that used those mechanical solutions before the invention of the more electronic and less mechanical means came along.

Continue reading “Early Electromechanical Circuits”

Did A Russian Physicist Invent Radio?

It is said that “success has many fathers, but failure is an orphan.” Given the world-changing success of radio in the late 19th and early 20th centuries, it’s no wonder that so many scientists, physicists, and engineers have been credited with its invention. The fact that electromagnetic radiation is a natural phenomenon that no one can reasonably claim to have invented sometimes seems lost in the shuffle to claim the prize.

But it was exactly through the study of natural phenomena that one of the earliest pioneers in radio research came to have a reasonable claim to at least be the inventor of the radio receiver, well before anyone had learned how to reliably produce electromagnetic waves. This is the story of how a Russian physicist harnessed the power of lightning and became one of the many fathers of radio.

Continue reading “Did A Russian Physicist Invent Radio?”

A Cloud Of Lightning Detectors

strikes

Here’s an interesting project to plot every lightning strike on Earth. Blitzortung is a project that uses many extremely low-cost sensor boards packed with an amplifier, microcontroller, and an Ethernet socket to detect lightning strikes. When multiple stations send all that data up to a server, the location of lightning strikes can be calculated, even if they’re hundreds of miles away from any station.

Each station works by detecting a change in the local EM field caused by a lightning strike with either a large loop antenna or a smaller ferrite core antenna. These signals can be amplified and turned into usable data, time stamped, and sent out on the Internet. From there, it’s a simple time of flight calculation to precisely locate where lightning strikes.

The hardware is actually pretty simple, with based on an STM32F4 Discovery board. A controller includes an Ethernet port, GPS unit, LCD, and all the hardware associated with detecting lightning strikes.

If you’d like to see what’s possible with a huge network of lightning detectors connected to the Internet you can check out LightningMaps for a look at what’s possible.

Thanks [Sean] for sending this in.