Making Robot Snakes That Slither, Sidewind, And Strike

[Will Donaldson] has been making robot snakes of all sorts. One of his snakes hugs the ground, slithering across it with a sine wave motion. Flipping it on its side and calling different code, that same snake also moves like an inchworm. Another of his snakes lifts parts of itself upward to move sideways across the ground, again using sine waves.

3D printed scales
3D printed scales

At first, his slithering snake would only oscillate in place on the floor. Looking more closely at biological snakes, he found that part of the reason they moved forward was due to their scales. The scales move smoothly over the ground in one direction but grip when pushed backward or sideways. He also found work done at Harvard University where they combined pumped air and papercraft to make scales which change shape. And so [Will] designed and 3D printed some scales for his snake. However, as you can see in the video below, they didn’t work on carpet.

His success came when he added wheels to each segment. They didn’t work like a car, there was no engine turning the wheels. Instead, they acted more like scales, rotating freely in one direction and gripping when pushed sideways. This success also allowed him to add a parameter to his code for turning left or right.

As we said above, he can flip the ground hugger sideways and run it as an inchworm and he also has a working sidewinder snake variation. The sidewinder can even lift up its head and strike like a cobra. Check out his hackaday.io page if you want to make your own. He’s provided STL files, code, and construction details.

[Will] has a lot of future plans for his snakes. Currently, they’re tethered to a modified ATX power supply but he’d like to incorporate LiPo batteries into the snakes instead. His original goal was to make a tree climbing snake like the one by the Biorobotics lab at Carnegie Mellon University (updated link for the article) but his first snake wasn’t long enough. He still plans on pursuing that as well as an underwater electronic eel. There seems to be no limit to the things he can try. For now, check out the video below to see his successes and his failures so far. Maybe you even have some suggestions for those tricky scales. The undersides of his snake’s segments do seem modular, lending themselves to experimentation.

Continue reading “Making Robot Snakes That Slither, Sidewind, And Strike”

Espresso Machine From Motorbike Engine Parts

[Rulof Maker] is a master at making things from salvaged parts, and being an Italian lover of espresso coffee, this time he’s made an espresso machine. The parts in question are a piston and cylinder from an old motorbike, believe it or not, and parts from an IKEA lamp.

Why the piston and cylinder? For those not familiar with espresso machines, they work by forcing pressurized, almost boiling water through ground coffee. He therefore puts the water in the piston cylinder, and levers the piston down onto it, forcing the water out the bottom of the cylinder and through the waiting coffee grounds. Parts from the IKEA lamp form a base for the waiting cup to sit on.

Of course, he takes great care to clean out any burnt oil and gas before starting. We also like how he centers a lever arm on a U-shaped bolt using two springs. Clever. But see the master in action for yourself in the video below.

Continue reading “Espresso Machine From Motorbike Engine Parts”

[James Bruton] Is Making A Dog: OpenDog Project

There was a time when a two-legged walking robot was the thing to make. But after seeing years of Boston Dynamic’s amazing four-legged one’s, more DIYers are switching to quadrupeds. Now we can add master DIY robot builder [James Bruton] to the list with his openDog project. What’s exciting here is that with [James’] extensive robot-building background, this is more like starting the challenge from the middle rather than the beginning and we should see exciting results sooner rather than later.

James' motor and ball screws
James’ motor and ball screws

Thus far [James] has gone through the planning stage, having iterated through a few versions using Fusion 360, and he’s now purchased the parts. It’s going to be about the same size as Boston Robotic’s SpotMini and uses three motors for each leg. He considered going with planetary gearboxes on the motors but experienced a certain amount of play, or backlash, with them in his BB-9E project so this time he’s going with ball screws as he did with his exoskeleton. (Did we mention his extensive background?)

Each leg is actually made up of an upper and lower leg, which means his processing is going to have to include some inverse kinematics. That’s where the code decides where it wants the foot to go and then has to compute backwards from there how to angle the legs to achieve that. Again drawing from experience when he’s done it the hard way in the past, this time he’s designed the leg geometry to make those calculations easy. Having written up some code to do the calculations, he’s compared the computed angles with the measurements he gets from positioning the legs in Fusion 360 and found that his code is right on. We’re excited by what we’ve seen so far and bet it’ll be standing and walking in no time. Check out his progress in the video below.

Continue reading “[James Bruton] Is Making A Dog: OpenDog Project”

No Microcontroller In This Vending Machine, D’oh!

You might think that a microcontroller would be needed to handle a vending machine’s logic. For one thing, only the correct change should activate them and the wrong change should be returned.  If the correct change was detected then a button press should deliver the right food to the dispenser. But if you like puzzles then you might try to think of a way to do with without a microcontroller. After all, the whole circuit can be thought of as a few motors, a power source, and a collection of switches, including the right sized coin.

That’s the way [Little Puffin] approached this donut dispensing vending machine. What’s really fun is to watch the video below and wonder how the logic will all come together as you see each part being put in place. For example, it’s not until near the end that you see how the coin which is a part of the circuit is removed from the circuit for the next purchase (we won’t spoil it for you). Coins which are too small are promptly returned to the customer. To handle coins which are the right size but are too heavy, one enhancement could be to make them fall through a spring-moderated trap door and be returned as well. We’re not sure how to handle coins which are the right size but too light though.

Continue reading “No Microcontroller In This Vending Machine, D’oh!”

Space Invaders Sound Chip Went Old School With I2L

It must be everyone’s birthday today because [Ken Shirriff] has come out with a gift for us. He’s done another pass at reverse engineering the 76477 Space Invaders sound chip from the 1970s and found it’s full of integrated injection logic (I2L), making it a double treat: we get to explore the more of this chip which made sounds for so many of our favorite games, and we explore a type of logic which was to be the successor to TTL until CMOS came along.

I<sup>2</sup>L gate
I2L gate

This article has a similar shape to his last one, first introducing I2L, followed by showing us what it looks like on the die, and then covering the different functional elements which make heavy use of it. The first of these is the noise generator made up of a section of shift registers and a ring oscillator. That’s followed by a noise filter which doesn’t use I2L but does use current mirrors. And lastly, he talks about the mixer which mixes output from the noise generator and elements covered in his previous article, the voltage-controlled oscillator, and the super-low frequency oscillator. Oddly enough, and as he points out, it isn’t an analog mixer. Instead, it just ANDs together the various inputs.

[Ken’s] no stranger to putting dies under the microscope. Check out our coverage of his talk at the 2016 Hackaday SuperConference where he shows us the guts of such favorites as the Z80 and the 555 timer IC.

Facebook’s Universal Music Translator

Star Trek has its universal language translator and now researchers from Facebook Artificial Intelligence Research (FAIR) has developed a universal music translator. Much of it is based on Google’s WaveNet, a version of which was also used in the recently announced Google Duplex AI.

Universal music translator architectureThe inspiration for it came from the human ability to hear music played by any instrument and to then be able to whistle or hum it, thereby translating it from one instrument to another. This is something computers have had trouble doing well, until now. The researchers fed their translator a string quartet playing Haydn and had it translate the music to a chorus and orchestra singing and playing in the style of Bach. They’ve even fed it someone whistling the theme from Indiana Jones and had it translate the tune to a symphony in the style of Mozart.

Shown here is the architecture of their network. Note that all the different music is fed into the same encoder network but each instrument which that music can be translated into has its own decoder network. It was implemented in PyTorch and trained using eight Tesla V100 GPUs over a total of six days. Efforts were made during training to ensure that the encoder extracted high-level semantic features from the music fed into it rather than just memorizing the music. More details can be found in their paper.

So if you want to hear how an electric guitar played in the style of Metallica might have been translated to the piano by Beethoven then listen to the samples in the video below.

Continue reading “Facebook’s Universal Music Translator”

Blowing Arcylic Canopies Using Stuff From Around The Shop

Blowing an acrylic sheet after heating it is an easy way to make a smooth and transparent canopy or bubble for anything from clams to light fixtures. [Michael Barton-Sweeney] does it using plastic blow ovens he made cheaply, mainly from stuff which most of us already have in our workshops.

Plastics blow ovenAll you need is a way to heat the plastic, to then clamp it down around the edges, and finally to blow air into it as you would when blowing up a balloon. Of course, there are things to watch out for such as making sure the plastic is heated evenly and letting it cool slowly afterward but he covers all that on his hackaday.io page.

He’s also on his second plastics blow oven. The first one worked very well and is perhaps the easiest to make, building up an enclosure of CMUs (cinder blocks) and brick. He had success heating it with both propane and with electric current run through Kanthal wire. But the CMUs absorbed a lot of heat, slowing down the process. So for his second one he made a cast concrete enclosure with aluminum reflectors inside to focus the heat more to where needed.

We’re not sure of everything he’s blown acrylic bubbles for but we first learned of his ovens from the transparent clams in his underwater distributed sensor network. In fact, he was inspired to do plastics blowing from a childhood memory of the Air Force museum in Dayton, Ohio, where they visited the restoration hanger and watched the restorers blowing bubbles for a B-17 ball turret.

Though if you want to go smaller and simpler for something like a light fixture then you can get away with using a toaster oven, a PVC pipe, and a toilet flange.