Camcorder Viewfinder Converted To Diminutive Vector Display

We generally cast a skeptical eye at projects that claim some kind of superlative. If you go on about the “World’s Smallest” widget, the chances are pretty good that someone will point to a yet smaller version of the same thing. But in the case of what’s touted as “The world’s smallest vector monitor”, we’re willing to take that chance.

If you’ve seen any of [Arcade Jason]’s projects before, you’ll no doubt have noticed his abiding affection for vector displays. We’re OK with that; after all, many of the best machines from the Golden Age of arcade games such as Asteroids and Tempest were based on vector graphics. None so small as the current work, though, based as it is on the CRT from an old camcorder’s viewfinder. The tube appears to be about 3/4″ (19 mm) in diameter, and while it still had some of its original circuitry, the deflection coils had to be removed. In their place, [Jason] used a ferrite toroid with two windings, one for vertical and one for horizontal. Those were driven directly by a two-channel push-pull audio amplifier to make patterns on the screen. Skip to 15:30 in the video below to see the display playing [Jerobeam Fenderson]’s “Oscilloscope Music”.

As much as we’d love to see a tiny game of Battlezone played on the diminutive display, there’s only so much it can do. Maybe an analog version of this adorable digital oscilloscope would be possible?

Continue reading “Camcorder Viewfinder Converted To Diminutive Vector Display”

Curve Tracing On Spray Painted CRTs

A Lissajous curve is formed when two sine waves plotted on their respective X and Y axes. You can see one using an oscilloscope and a couple of signal generators, if you play with one of those ‘pendulums tracing in the sand’ toys, or if you really need something sciencey for your home decor you can trace them out with a disassembled CRT. That’s what [Emily] did with the LissaJukebox. It traces curves. No, it’s not a curve tracer, that’s another tool altogether

If you’re going to put squigglies on a CRT, you obviously need a CRT, and it needs to look good. There are a few options out there, from old oscilloscope tubes, the CRTs found in old VHS camcorders, to tiny electrostatic tubes that are slightly easier to drive. For this build, [Emily] chose an old, bog-standard, black and white television. But the screen is green, right? Yeah, but if you carefully mask off a CRT and buy some stained glass spray paint, a CRT can be any color you want. Except for purple, the purple stained glass spray paint didn’t work for some reason.

To generate the various functions, [Emily] used an XR2206 function generator, sold in kit form on Amazon, eBay, and various other online retailers for a pittance. One of these function generators controls the X axis, another the Y, and both of these generators are fed into a 15 Watt stereo amplifier board to run the deflection coils in the CRT. If you’re following along at home, yes, this is dangerous. Don’t touch the CRT or it will stop your heart. Those of us whose hearts are as black as coal are safe.

There were a few modifications needed to turn the XR2206 function generator ‘kit’ into something a bit more useful for this project. The through-hole pots were replaced with panel-mount pots, and the range/amplitude setting is now controlled with a rotary switch.

Is it useful? Well, actually, if you’re building a set for a TV show and you need something that looks ‘sciencey’, a LissaJukebox should be right up your alley. Other than that it looks pretty, and we now know there’s a spray paint that will turn your old, boring black and white CRT into a glorious amber phosphor. Can’t beat that.

Watch Video On A Oscilloscope With An ESP32

[bitluni] got a brand new scope, and he couldn’t be happier. No, really — check the video below; he’s really happy. And to celebrate, he turned his scope into a vector display using an ESP32.

Using a scope in X-Y mode is nothing new, of course. The technique is used to display everything from Lissajous patterns from an SDR to bouncing balls from an analog computer. Taken on as more of an exercise to learn how to use his new tool than a practical project, [bitluni]’s project starts by using two DACs on an ESP32 to create simple Lissajous patterns to learn about the scope’s controls. Next he built some code to display 3D point clouds, but learned that the native DAC code wasn’t up to the job. A little hacking improved the speed 27-fold, which was enough for great 3D images and live video from an I²S camera module. The latter was accomplished by grabbing frames from the camera and rendering them pixel by pixel, CRT style. The results are pretty clean, and there’s a lot to be learned about both using scopes as X-Y displays and tweaking the ESP32 for maximum performance.

Need more background on the ESP32? Start by checking out these ESP32 tutorials.

 

Continue reading “Watch Video On A Oscilloscope With An ESP32”