Modernizing An Apple IPod, Or: A Modern-Day Ship Of Theseus

Back in the day the Apple iPod was the personal music player (PMP) to get even if mostly because everyone and their dogs had one. These days most people just use their smartphone as a PMP, but what if you were to take, say, a 5th generation iPod and modernized it? That was the basic idea that [Zac Builds] picked up and ran with, with the results as shown in the video he made about it.

The 5th gen iPod was the first one capable of playing video, and was released in October of 2005. Powering it is a Broadcom BCM2722 for video playback, and came with a 30 or 60 GB HDD. First thing that [Zac] tosses is the old (3.7V, 650 mAh) battery, which appears to be already a replacement for the original, followed by the 60 GB 1.8″ HDD. Next tossed is the 2.5″ 320×240 QVGA screen, which gets replaced by a compatible modern LCD. The case is replaced with a transparent case, along with a transparent touch wheel, and the HDD is replaced with a 256 GB SD card in an iFlash Solo SD card adapter for iPods.

Next up was the installation of more off-the-shelf mods, such as a ‘taptic mod’ – which adds a rumble motor – and replacing the iPod’s 30-pin connector with a USB-C connector, requiring some fiddly soldering and desoldering. Following this a Bluetooth audio transmitter was added, extreme PCB mods performed with a cut-off wheel to make everything fit with a custom midframe and rear case.

Ultimately, the parts left of the original iPod were most of the mainboard and some flex cable, which raises the question of whether it might not have been faster and easier to start off with designing a custom PCB. Perhaps the true value is in the modding journey and not the destination?

Thanks to [Keith Olson] for the tip.

Continue reading “Modernizing An Apple IPod, Or: A Modern-Day Ship Of Theseus”

Increasing The Resolution Of The Electrical Grid

As a society in the USA and other parts of the world, we don’t give much thought to the twisting vines of civilization that entangle our skies and snake beneath our streets. The humming electrical lines on long poles that string our nations together are simply just there. Ever-present and immutable. We expect to flick the switch and power to come on. We only notice the electrical grid when something goes wrong and there is a seemingly myriad number of ways for things to go wrong. Lighting strikes, trees falling on lines, fires, or even too many people trying to crank on the A/C can all cause rolling blackouts. Or as we found out this month, cold weather can take down generation systems that have not been weatherized.

We often hear the electrical grid described as aging and strained. As we look to the future and at the ever-growing pressure on the infrastructure we take for granted, what does the future of the electrical grid look like? Can we move past blackouts and high voltage lines that criss-cross the country?

Continue reading “Increasing The Resolution Of The Electrical Grid”

How Smart Is The Grid?

Marketing and advertising groups often have a tendency to capitalize on technological trends faster than engineers and users can settle into the technology itself. Perhaps it’s no surprise that it is difficult to hold back the motivation to get a product to market and profit. Right now the most glaring example is the practice of carelessly putting WiFi in appliances and toys and putting them on the Internet of Things, but there is a similar type of fiasco playing out in the electric power industry as well. Known as the “smart grid”, an effort is underway to modernize the electric power grid in much the same way that the Internet of Things seeks to modernize household appliances, but to much greater and immediate benefit.

A Cutler-Hammer industrial breaker ominously predicts the coming confusion in the smart grid arena.
Photo by Bryan Cockfield

To that end, if there’s anything in need of modernization it’s the electric grid. Often still extensively using technology that was pioneered in the 1800s like synchronous generators and transformers (not to mention metering and billing techniques that were perfected before the invention of the transistor), there is a lot of opportunity to add oversight and connectivity to almost every part of the grid from the power plant to the customer. Additionally, most modern grids are aging rapidly at the same time that we are asking them to carry more and more electricity. Modernization can also help the aging infrastructure become more efficient at delivering energy.

While the term “smart grid” is as nebulous and as ill-defined as “Internet of Things” (even the US Government’s definition is muddied and vague), the smart grid actually has a unifying purpose behind it and, so far, has been an extremely useful way to bring needed improvements to the power grid despite the lack of a cohesive definition. While there’s no single thing that suddenly transforms a grid into a smart grid, there are a lot of things going on at once that each improve the grid’s performance and status reporting ability.

Continue reading “How Smart Is The Grid?”