Brilliant Brick Prototyping

Have a rusty collection of protoboards wired together that would benefit from mechanical support? Working on putting together a robot and need to attach PCBAs without drilling holes, zipping a cable tie, or globing hot glue? Add some stud holes with [James Munns]’ Brick Mount! This isn’t the first time we’ve seen an interface between everyone’s favorite Nordic building system and circuitboards, but this implementation has the elegance we’ve come to expect from [James]’ software work.

4×8 Feather Medium protoboard

The project repository contains two things: a KiCad library with components for holes in standard patterns and sizes (1×1, 1×2, etc) and a series of protoboards made with those hole components. The protoboards feature a couple common elements; QUIIC connectors for easy chaining between them and holes in the middle or edges for easy mounting on studs. Some are intended to be carriers for Feather-format PCBAs (very convenient!) and others are primarily undifferentiated prototyping space. Of particular note is the “medium” Feather breakout seen to the left, which incorporates clever cutouts to make it easy to wires down under the board so it can be mounted flush against another board.

The thesis here is that getting custom PCBs fabricated is easier and less expensive than ever before. So easy and inexpensive that fabricating customized protoboard to use in one-off projects is cost-efficient enough to be worthwhile. Waste concerns aside this does seem like a great way to level up those temporary projects which find a more permanent home.

Christmas Tree Water Sensor Gets An Upgrade And A Fancy New Box

xmas-tree-water-sensor

[Eric Ayars] has a nice cast iron Christmas tree stand at home, but the only drawback is that the stand makes it hard to see just how much water is available to the tree. Last year we covered a small gadget he created to help keep tabs on the water level, but as several of you predicted, the system eventually failed.

His previous solution used copper plated proto board to sense how much water was in the stand, but the leads corroded in about a week’s time. With Christmas just around the corner, he decided to give things another try.

His revamped water level sensor relies on measuring capacitance changes in a copper strip board when under water rather than detecting a complete circuit like the previous model. To protect his sensor this time around he coated the board with polyurethane, which should provide a decent corrosion barrier.

Using the Arduino CapSense library, the sensor can detect the presence of water, signaling an alarm if the base needs refilling. One of our readers suggested that he use the tree itself as a low water indicator, which is just what [Eric] did this year. If the water is somewhat low, the Arduino-controlled relay powering the tree is switched off and then on again, every 5 seconds. If the base is nearly dry, the tree asks for water by blinking the word “Water” repeatedly in Morse code.

We think that this year’s solution is pretty clever, and we’re glad to see that [Eric] didn’t give up after last year’s setback!

Proto-board Z80 Computer

diy_zilog

We’ve seen  Z80 processor based computers before but they usually use a printed circuit board to easily and reliably connect all the components. [Marton] sent us his Z80 based computer from a while back that is built entirely on prototyping board. He made his own video board that utilizes a TV as the monitor and his own mainboard incorporating a keyboard controller. The system runs at 4 MHz, has 32k of ram, and runs [Marton’s] own system software which he has posted. Its quite impressive and we love the protoboard porn with thousands of grey wires running everywhere.

[Marton] used the resources on [Hans Summers’] site for his project. Make sure to check it out if you’re interested in a broader background concerning DIY Zilog Z80 computers.