The experimental setup for entanglement-distribution experiments. (Credit: Craddock et al., PRX Quantum, 2024)

Entangled Photons Maintained Using Existing Fiber Under NYC’s Streets

Entangled photons are an ideal choice for large-scale networks employing quantum encryption or similar, as photons can use fiber-optical cables to transmit them. One issue with using existing commercial fiber-optic lines for this purpose is that these have imperfections which can disrupt photon entanglement. This can be worked around by delaying one member of the pair slightly, but this makes using the pairs harder. Instead, a team at New York-based startup Qunnect used polarization entanglement to successfully transmit and maintain thousands of photons over the course of weeks through a section of existing commercial fiber, as detailed in the recently published paper by [Alexander N. Craddock] et al. in PRX Quantum (with accompanying press release).

The entangled photons were created via spontaneous four-wave mixing in a warm rubidium vapor. This creates a photon with a wavelength of 795 nm and one with 1324 nm. The latter of which is compatible with the fiber network and is thus transmitted over the 34 kilometers. To measure the shift in polarization of the transmitted photos, non-entangled photons with a known polarization were transmitted along with the entangled ones. This then allowed for polarization compensation for the entangled photos by measuring the shift on the single photons. Overall, the team reported an uptime of nearly 100% with about 20,000 entangled photons transmitted per second.

As a proof of concept it shows that existing fiber-optical lines could in the future conceivably be used for quantum computing and encryption without upgrades.

Mastercard’s New Card: Safer From Quantum Attacks?

Quantum computers present a unique threat to many aspects of modern information technology. In particular, many cryptographic systems could be at risk of compromise in the event a malicious actor came into possession of a capable quantum computer.

Mastercard is intending to stay ahead of the game in this regard. It has launched a new contactless credit card that it says is impervious to certain types of quantum attack.

Continue reading “Mastercard’s New Card: Safer From Quantum Attacks?”

Quantum Computing And The End Of Encryption

Quantum computers stand a good chance of changing the face computing, and that goes double for encryption. For encryption methods that rely on the fact that brute-forcing the key takes too long with classical computers, quantum computing seems like its logical nemesis.

For instance, the mathematical problem that lies at the heart of RSA and other public-key encryption schemes is factoring a product of two prime numbers. Searching for the right pair using classical methods takes approximately forever, but Shor’s algorithm can be used on a suitable quantum computer to do the required factorization of integers in almost no time.

When quantum computers become capable enough, the threat to a lot of our encrypted communication is a real one. If one can no longer rely on simply making the brute-forcing of a decryption computationally heavy, all of today’s public-key encryption algorithms are essentially useless. This is the doomsday scenario, but how close are we to this actually happening, and what can be done?

Continue reading “Quantum Computing And The End Of Encryption”

Burning Things With Big Lasers In The Name Of Security

Several fields of quantum research have made their transition from research labs into commercial products, accompanied by grandiose claims. Are they as good as they say? We need people like Dr. Sarah Kaiser to independently test those claims, looking for flaws in implementation. At the 2019 Hackaday Superconference she shared her research on attacking commercially available quantum key distribution (QKD) hardware.

Don’t be scared away when you see the term “quantum” in the title. Her talk is very easy to follow along, requiring almost no prior knowledge of quantum research terminology. In fact, that’s the point. Dr. Kaiser’s personal ambition is to make quantum computing an inviting and accessible topic for everyone, not just elite cliques of researchers in ivory towers. You should hear her out in the video below, and by following along with the presentation slide deck (.PPTX).

Quantum Key Distribution

So why is QKD is so enticing? Unlike existing methods, the theoretical foundation is secure against any attacker constrained by the speed of light and the laws of physics.

Generally speaking, if your attacker is not bound by those things, we have a much bigger problem.

But as we know well, there’s always a difference between the theoretical foundation and the actual implementation of cryptography. That difference is where exploits like side-channel attacks thrive, so she started investigating components of a laser QKD system.

As a self-professed “Crazy Laser Lady”, part of this investigation examined how components held up to big lasers delivering power far outside normal operating range. This turned up exciting effects like a fiber fuse (~17:30 in the video) which is actually a plasma fire propagating through the fiber optic. It looks cool, but it’s destructive and useless for covert attacks. More productive results came when lasers were used to carefully degrade select components to make the system vulnerable.

If you want to learn more from Dr. Kaiser about quantum key distribution, she has a book chapter on the topic. (Free online access available, but with limitations.) This is not the first attempt to hack quantum key distribution, and we doubt it would be the last. Every generation of products will improve tolerance to attacks, and we’ll need researchers like our Crazy Laser Lady to find the reality behind advertised claims.

Continue reading “Burning Things With Big Lasers In The Name Of Security”

36C3: Build Your Own Quantum Computer At Home

In any normal situation, if you’d read an article that about building your own quantum computer, a fully understandable and natural reaction would be to call it clickbaity poppycock. But an event like the Chaos Communication Congress is anything but a normal situation, and you never know who will show up and what background they will come from. A case in point: security veteran [Yann Allain] who is in fact building his own quantum computer in his garage.

Starting with an introduction to quantum computing itself, and what makes it so powerful also in the context of security, [Yann] continues to tell about his journey of building a quantum computer on his own. His goal was to build a stable computer he could “easily” create by himself in his garage, which will work at room temperature, using trapped ion technology. After a few iterations, he eventually created a prototype with KiCad that he cut into an empty ceramic chip carrier with a hobbyist CNC router, which will survive when placed in a vacuum chamber. While he is still working on a DIY laser system, he feels confident to be on the right track, and his estimate is that his prototype will achieve 10-15 qubits with a single ion trap, aiming to chain several ion traps later on.

As quantum computing is often depicted as cryptography’s doomsday device, it’s of course of concern that someone might just build one in their garage, but in order to improve future cryptographic systems, it also requires to fully understand — also on a practical level — quantum computing itself. Whether you want to replicate one yourself, at a rough cost of “below 15k Euro so far” is of course a different story, but who knows, maybe [Yann] might become the Josef Prusa of quantum computers one day.

Continue reading “36C3: Build Your Own Quantum Computer At Home”

Quantum Computing Kills Encryption

Imagine a world where the most widely-used cryptographic methods turn out to be broken: quantum computers allow encrypted Internet data transactions to become readable by anyone who happened to be listening. No more HTTPS, no more PGP. It sounds a little bit sci-fi, but that’s exactly the scenario that cryptographers interested in post-quantum crypto are working to save us from. And although the (potential) threat of quantum computing to cryptography is already well-known, this summer has seen a flurry of activity in the field, so we felt it was time for a recap.

How Bad Is It?

If you take the development of serious quantum computing power as a given, all of the encryption methods based on factoring primes or doing modular exponentials, most notably RSA, elliptic curve cryptography, and Diffie-Hellman are all in trouble. Specifically, Shor’s algorithm, when applied on a quantum computer, will render the previously difficult math problems that underlie these methods trivially easy almost irrespective of chosen key length. That covers most currently used public-key crypto and the key exchange that’s used in negotiating an SSL connection. That is (or will be) bad news as those are what’s used for nearly every important encrypted transaction that touches your daily life.

Continue reading “Quantum Computing Kills Encryption”

Quantum Cryptography In-band Attack

Quantum cryptography is an emerging field, but low install base hasn’t kept researchers from exploring attacks against it. It’s an attractive technology because an attacker sniffing the key exchange changes the quantum state of the photons involved. All eavesdroppers can be detected because of this fundamental principal of quantum mechanics.

We’ve seen theoretical side-channel attacks on the hardware being used, but had yet to see an in-band attack until now. [Vadim Makarov] from the University of Science and Technology in Trondheim has done exactly that (Internet Archive). Quantum key distribution systems are designed to cope with noise and [Makarov] has taken advantage of this. The attack works by firing a bright flash of light at all the detectors in the system. This raises the amount of light necessary for a reading to register. The attacker then sends the photon they want detected, which has enough energy to be read by the intended detector, but not enough for the others. Since it doesn’t clear the threshold, the detectors don’t throw any exceptions. The attacker could sniff the entire key and replay it undetected.

This is a very interesting attack since it’s legitimate eavesdropping of the key. It will probably be mitigated using better monitoring of power fluctuations at the detectors.

[via I)ruid]