Mosquito Laser Death Grid Is Just What It Sounds Like

Mosquitoes suck. Quite literally. [Allen Pan] lives in an area where they’re so thick in the air, regular methods of killing them fail to put a dent in their numbers. Thus, he set about building a solution so dangerous we wouldn’t want to be within a mile when it’s turned on. 

[Allen] was inspired by a TED talk from over a decade ago that involved targeting flying mosquitoes with high-powered scanning lasers. This technology never really came to fruition, and raised many questions about laser safety and effectiveness.

Testing the idea with only two mirrors installed.

This solution keeps the lasers, but goes a slightly different route — two 10-watt lasers bounced between multiple mirrors to create a laser death grid. It goes without saying that 10 watt lasers will blind you near instantly even at great range, and can burn skin and cause all manner of other horrors. Bouncing them around with mirrors and waving them about at mosquitoes is a really poor idea when even incidental exposure can do real harm.

Indeed, the laser is so powerful that it burns holes in the mirrors [Allen] used in early testing. It was around this time that [styropyro] was brought in to help ensure everyone involved got through the project with their eyesight intact.

[Allen]’s crew wears laser safety goggles when operating the horrifying handheld device, which mitigates some risk. The team also quickly notice beams escaping from various directions, due in part to the holes burned in their clothes. Electing to wrap the device in a heatproof blanket to avoid accidentally dazzling any nearby pilots was an obvious idea but turning the device off and destroying it would have been smarter.

Sadly, despite looking like the coolest cyberpunk weapon we’ve seen in years, the device doesn’t even kill mosquitoes very effectively. The bugs largely avoided the device, and only a few that flew directly into a beam ended up being cooked. The whole time watching the video, we feared someone dropping the rig, leading to a 10-watt beam bouncing off and striking some poor innocent bystander.

Powerful lasers are cool and useful things. Try and use them responsibly.

Continue reading “Mosquito Laser Death Grid Is Just What It Sounds Like”

Electro-Optical Control Of Lasers With A Licorice Twist

You’ve got to hand it to [Les Wright]; he really knows how to dig into optical arcana and present topics in an interesting way. Case in point: an electro-optical control cell that’s powered by ouzo.

OK, the bit about the Greek aperitif may be stretching things a bit, but the Kerr Cell that [Les] builds in the video below does depend on anethole, the essential component of aniseed extract, which lends its aromatic flavor to everything from licorice to Galliano and ouzo. As [Les] explains, the Kerr effect uses a high-voltage field to rapidly switch light passing through a medium on and off. The most common medium in Kerr cells is nitrobenzene, a “distressingly powerful organic solvent” with such fun side effects as toxicity, flammability, and carcinogenicity.

Luckily, [Les] found a suitable substitute in the form of anethole — a purified sample, not just an ouzo nip. The solution went into a plain glass cuvette equipped with a pair of aluminum electrodes, which got connected to one of the high-voltage supplies we’ve seen him build before for his nitrogen laser. A pair of polarizing filters go on either end of the cuvette, and are adjusted to blank out the light passing through it. Applying 45 kilovolts across the cell instantly turns the light back on. Watch it in action in the video below.

There’s a lot of room left for experimentation on this one, including purification of the anethole for potentially better results. We’d also be curious if plain ouzo would show some degree of Kerr effect. For science, of course.

Continue reading “Electro-Optical Control Of Lasers With A Licorice Twist”

Review: WAINLUX K8, A Diode Laser That’s Ready To Work

Rarely a week goes by that some company doesn’t offer to send us their latest and greatest laser. You know the type — couple of aluminum extrusions, Class 4 diode flopping around in the breeze, and no enclosure to speak of unless you count the cardboard box they shipped it in. In other words, an accident waiting to happen. Such gracious invitations get sent to the trash without a second thought.

Now don’t get me wrong, I have no doubt that the average Hackaday reader would be able to render such a contraption (relatively) safe for use around the shop. Build a box around it, bolt on a powerful enough fan to suck the smoke out through the window, and you’ve turned a liability into a legitimate tool. But the fact remains that we simply can’t put our stamp on something that is designed with such a blatant disregard for basic safety principles.

The earlier WAINLUX JL4 — lucky rabbit foot not included.

That being the case, a recent email from WAINLUX nearly met the same fate as all those other invitations. But even at a glance it was clear that this new machine they wanted to send out, the K8, was very different from others we’d seen. Different even from what the company themselves have put out to this point. This model was fully enclosed, had a built-in ventilation fan, an optional air filter “sidecar”, and yes, it would even turn off the laser if you opened the door while it was in operation. After reading through the promotional material they sent over, I had to admit, I was intrigued.

It seemed like I wasn’t the only one either; it was only a matter of days before the Kickstarter for the WAINLUX K8 rocketed to six figures. At the time of this writing, the total raised stands at just under $230,000 USD. There’s clearly a demand for this sort of desktop laser, the simplicity of using a diode over a laser tube is already appealing, but one that you could actually use in a home with kids or pets would be a game changer for many people.

But would the reality live up to the hype? I’ve spent the last couple of weeks putting a pre-production WAINLUX K8 through its paces, so let’s take a look and see if WAINLUX has a winner on their hands.

Continue reading “Review: WAINLUX K8, A Diode Laser That’s Ready To Work”

This 3D Scanner Uses A Sensor You Might Not Know About

The huge diversity of sensors and other hardware which our community now has access to seems comprehensive, but there remain many parts which have made little impact due to cost or scarcity. It’s one of these which [Enginoor] has taken for the sensor in a 3D scanner, an industrial laser displacement sensor.

This sensor measures distance, but it’s not one of the time-of-flight sensors we’re familiar with. Instead it’s similar to a photographic rangefinder, relying on the parallax angle as seen from a sensor a distance apart from the laser. They are extremely expensive due to their high-precision construction, but happily they can be found at a more affordable level second-hand from decommissioned machinery.

In this case the sensor is mounted on an X-Y gantry, and scans the part making individual point measurements. The sensor is interfaced to a Teensy, which in turn spits the data back to a PC for processing. By their own admission it’s not the most practical of builds, but for us that’s not the point. We hope that bringing these parts to the attention of our community might see them used in other ways.

We’ve featured huge numbers of 3D scanners over the years, including a look at how not to make one.

Laser Engraver Uses All Of The DVD Drive

For the last ten to fifteen years, optical drives have been fading out of existence. There’s little reason to have them around anymore unless you are serious about archiving data or unconvinced that streaming platforms will always be around. While there are some niche uses for them still, we’re seeing more and more get repurposed for parts and other projects like this tabletop laser engraver.

The build starts with a couple optical drives, both of which are dismantled. One of the shells is saved to use as a base for the engraver, and two support structures are made out of particle board and acrylic to hold the laser and the Y axis mechanism. Both axes are made from the carriages of the disassembled hard drives, with the X axis set into the base to move the work piece. A high-output laser module is fitted to the Y axis with a heat sink, and an Arduino and a pair of A4988 motor controllers are added to the mix to turn incoming G-code into two-dimensional movement.

We’ve actually seen a commercial laser engraver built around the same concept, but the DIY approach is certainly appealing if you’ve got some optical drives collecting dust. Otherwise you could use them to build a scanning laser microscope.

Continue reading “Laser Engraver Uses All Of The DVD Drive”

Stack of Si3N4-LiNbO3 forming the integrated laser and integrated into test setup (d). (Credit: Snigirev et al., 2023)

Fast Adjustable Lasers Using Lithium Niobate Integrated Photonics

Making lasers smaller and more capable of rapidly alternating between frequencies, while remaining within a narrow band, is an essential part of bringing down the cost of technologies such as LiDAR and optical communication. Much of the challenge here lies understandably in finding the right materials that enable a laser which incorporates all of these properties.

A heterogeneous Si3N4–LiNbO3 chip as used in the study. (Credit: Snigirev et al., 2023)

Here a recent study by [Viacheslav Snigirev] and colleagues (press release) demonstrates how combining the properties of lithium niobate (LiNbO3) with those of silicon nitride (Si3N4) into a hybrid (Si3N4)–LiNbO3 wafer stack allows for an InP-based laser source to be modulated in the etched photonic circuitry to achieve the desired output properties.

Much of the modulation stability is achieved through laser self-injection locking via the microresonator structures on the hybrid chip. These provide optical back reflection that forces the laser diode to resonate at a specific frequency, providing the frequency lock. What enables the fast frequency tuning is that this is determined by the applied voltage on the microresonator structure via the formed electrodes.

With a LiDAR demonstration in the paper that uses one of these hybrid circuits it is demonstrated that the direct wafer bonding approach works well, and a number of optimization suggestions are provided. As with all of these studies, they build upon years of previous research as problems are found and solutions suggested and tested. It would seem that thin-film LiNbO3 structures are now finding some very useful applications in photonics.

(Heading image: Stack of Si3N4-LiNbO3 forming the integrated laser and integrated into test setup (d). (Credit: Snigirev et al., 2023) )

(a) Structure of the discharged capillary to produce the curved and straight plasma channel. (b) Spectrum distribution and calculated profile of the plasma density along the radial direction at the entrance of the discharged capillary. (c) Experimental setup for the measurements of laser guiding and electron acceleration. (Credit: Xinzhe Zhu et al., 2023)

Accelerating Electrons To TeV Levels Using Curved Laser Beams

There are many applications for particle accelerators, even outside research facilities, but for the longest time they have been large, cumbersome machines, not to mention very expensive to operate. Here laser wakefield accelerators (LWFAs) are a promising alternative, which uses lasers to create accelerated particles along the wake in a plasma field. One of the major struggles has been with reinjecting the thus accelerated particles into another stage of a multi-stage accelerator, which would be required to obtain energies closer to one TeV. In this area researchers have now demonstrated a way around this, by using curved channels for the laser beams (paywalled paper) which inject the laser beam into the continuous cavity. Continue reading “Accelerating Electrons To TeV Levels Using Curved Laser Beams”