Three-Conductor Pivot for E-Textiles is Better Than Wires

Pivots for e-textiles can seem like a trivial problem. After all, wires and fabrics bend and flex just fine. However, things that are worn on a body can have trickier needs. Snap connectors are the usual way to get both an electrical connection and a pivot point, but they provide only a single conductor. When [KOBAKANT] had a need for a pivoting connection with three electrical conductors, they came up with a design that did exactly that by using a flexible circuit board integrated to a single button snap.

This interesting design is part of a solution to a specific requirement, which is to accurately measure hand movements. The photo shows two strips connected together, which pivot as one. The metal disk near the center is a magnet, and underneath it is a Hall effect sensor. When the wrist bends, the magnet is moved nearer or further from the sensor and the unit flexes and pivots smoothly in response. The brief videos embedded below make it clear how the whole thing works.

Continue reading “Three-Conductor Pivot for E-Textiles is Better Than Wires”

How To Make Bisected Pine Cones Look Great, Step-by-Step

[Black Beard Projects] sealed some pine cones in colored resin, then cut them in half and polished them up. The results look great, but what’s really good about this project is that it clearly demonstrates the necessary steps and techniques from beginning to end. He even employs some homemade equipment, to boot.

Briefly, the process is to first bake the pine cones to remove any moisture. Then they get coated in a heat-activated resin for stabilizing, which is a process that infuses and pre-seals the pine cones for better casting results. The prepped pine cones go into molds, clear resin is mixed with coloring and poured in. The resin cures inside a pressure chamber, which helps ensure that it gets into every nook and cranny while also causing any small air bubbles introduced during mixing and pouring to shrink so small that they can’t really be seen. After that is cutting, then sanding and polishing. It’s an excellent overview of the entire process.

The video (which is embedded below) also has an outstanding depth of information in the details section. Not only is there an overview of the process and links to related information, but there’s a complete time-coded index to every action taken in the entire video. Now that’s some attention to detail.

Continue reading “How To Make Bisected Pine Cones Look Great, Step-by-Step”

DIY Vacuum Table Enhances PCB Milling

CNC milling a copper-clad board is an effective way to create a PCB by cutting away copper to form traces instead of etching it away chemically, and [loska] has improved that process further with his DIY PCB vacuum table. The small unit will accommodate a 100 x 80 mm board size, which was not chosen by accident. That’s the maximum board size that the free version of Eagle CAD will process.

When it comes to milling PCBs, double-sided tape or toe clamps are easy solutions to holding down a board, but [loska]’s unit has purpose behind its added features. The rigid aluminum base and vacuum help ensure the board is pulled completely flat and held secure without any need for external fasteners or adhesives. It’s even liquid-proof, should cutting fluid be used during the process. Also, the four raised pegs provide a way to reliably make double-sided PCBs. By using a blank with holes to match the pegs, the board’s position can be precisely controlled, ensuring that the back side of the board is cut to match the front. Holes if required are drilled in a separate process by using a thin wasteboard.

Milling copper-clad boards is becoming more accessible every year; if you’re intrigued by the idea our own [Adil Malik] provided an excellent walkthrough of the workflow and requirements for milling instead of etching.

Open Source Fader Bank Modulates our Hearts

Here at Hackaday, we love knobs and buttons. So what could be better than one button? How about 16! No deep philosophy about the true nature of Making here; [infovore], [tehn], and [shellfritsch] put together a very slick, very adaptable bank of 16 analog faders for controlling music synthesis. If you don’t recognize those names it might help to mention that [tehn] is one of the folks behind monome, a company built on their iconic grid controller. Monome now produces a variety of lovingly crafted music creation tools.

Over the years we’ve written about some of the many clones and DIY versions of the monome grid controller, so it’s exciting to see an open source hardware release by the creators themselves!

The unambiguously named 16n follows in the footsteps of the monome grid in the sense that it’s not really for something specific. The grid is a musical instrument insofar as it can be connected to a computer (or a modular synth, etc) and used as a control input for another tool that creates sound. Likewise, the 16n is designed to be easily integrated into a music creation workflow. It can speak a variety of interfaces, like purely analog control voltage (it has one jack per fader), or i2c to connect to certain other monome devices like Ansible and Teletype. Under the hood, the 16n is actually a Teensy, so it’s fluent in MIDI over USB and nearly anything else you can imagine.

Continue reading “Open Source Fader Bank Modulates our Hearts”

Making an Ultrasonic Cutter for Post-processing Tiny 3D Prints

An ultrasonic knife is a blade that vibrates a tiny amount at a high frequency, giving the knife edge minor superpowers. It gets used much like any other blade, but it becomes far easier to cut through troublesome materials like rubber or hard plastics. I was always curious about them, and recently made my own by modifying another tool. It turns out that an ultrasonic scaling tool intended for dental use can fairly easily be turned into a nimble little ultrasonic cutter for fine detail work.

Cheap ultrasonic scaler. The blue disk is for adjusting power. Foot switch not shown.

I originally started thinking about an ultrasonic knife to make removing supports from SLA 3D prints easier. SLA resin prints are made from a smooth, hard plastic and can sometimes require a veritable forest of supports. These supports are normally removed with flush cutters, or torn off if one doesn’t care about appearances, but sometimes the density of supports makes this process awkward, especially on small objects.

I imagined that an ultrasonic blade would make short work of these pesky supports, and for the most part, I was right! It won’t effortlessly cut through a forest of support bases like a hot knife through butter, but it certainly makes it easier to remove tricky supports from the model itself. Specifically, it excels at slicing through fine areas while preserving delicate features. Continue reading “Making an Ultrasonic Cutter for Post-processing Tiny 3D Prints”

HD Video and Telemetry Link Uses Standard WiFi Hardware

[GlytchTech] decided to implement his own Digital Data Link (DDL) for his drone experiments, and by using a Raspberry Pi Zero and some open-source software, he succeeded in creating a mostly self-contained system that delivers HD video and telemetry using an Android phone as a display.

USB tethered Android phone used as a display and touch interface.

The link uses standard WiFi hardware in a slightly unusual way to create a digital data link that acts more like an analog system, with a preference for delivering low latency video and a graceful drop-off when signal quality gets poor. A Raspberry Pi Zero, Alfa NEH WiFi card, external antenna, battery, and a 3D printed enclosure result in a self-contained unit. Two are needed: one for each end of the link. One unit goes on the drone and interfaces to the flight controller, and the other is for the ground station.

A companion android app allows for just about any old Android phone to serve as video feed, on-screen display of telemetry data, and touchscreen interface.

The software is DroneBridge (GitHub repository) and it implements Wifibroadcast which uses WiFi radios, but without the usual WiFi functionality. A Raspberry Pi is the usual platform, but there’s also an ESP32 port. The software is capable of even more, but so far suits [GlytchTech]’s needs just fine, and he was able to refine his original Watch_Dogs-inspired hacking drone with it.

The Most-3D-Printed 3D Printer

The most awesome things about having a 3D printer is that you can create almost anything which includes parts for the 3D printer itself. Different materials give power to your imagination and allow you to go beyond the 3D printed vase. So much so that one maker has gone as far as 3D print the bearings as well as the axis screws and nuts and it works!

The RepRap project was the first project to incorporate 3D printed parts to make it self-replicating to a certain extent. The clamps and mounts could be easily printed, however, this project uses a 3D printed frame as well as two linear bearings for the y-axis and z-axis and one for the x-axis. The y-axis is a 3D printed rack-and-pinion while the z-axis is made of a 3D printed screws and nuts. So basically, the servo motors, extruder/hotend and limits switches with mounting screws are the only part that need be bought at the store.

Even though in motors are running hot causing mounts to get soft, heat-sinks are predicted to resolve the issue. This one is not designed for accuracy though it can be a great resource for budding engineers and hackers to get their feet wet with customizing 3D printers. Check out the video for a demo.

From 3D printed guitars to RC Planes, there is a lot you can do with micro-manufacturing and all we need now is a 3D printed motor to get things rolling. Continue reading “The Most-3D-Printed 3D Printer”